Угловое перемещение, угловая скорость и угловое ускорение

Лекция №4 Криволинейное движение.

План:

1. Тангенциальная и нормальная составляющая ускорения.

2. Угловое перемещение, угловая скорость, угловое ускорение.

3. Связь угловых и линейных величин. Уравнение кинематики вращательного движения.

1.По форме траектории движение может быть: прямолинейным и криволинейным. При прямолинейном движении траектория – прямая линия и векторы скорости и ускорения совпадают с направлением траектории.

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек, полет снаряда, движение маятника.

Пусть материальная точка движется по произвольной криволинейной тра ектории с переменной по модулю скоростью. В этом случае за счет криволинейности траектории скорость будет изменяться по направлению, кроме того, у скорости изменяется ее модуль. Для характеристики такого движения полное ускорение удобно представить в виде суммы двух составляющих: нормального ускорения, направленного перпендикулярно скорости, и тангенциального ускорения, направленного вдоль вектора скорости.

 рис.1

Модуль полного ускорения вычисляется по теореме Пифагора: а=

Нормальное ускорение направлено по нормали к скорости, его модуль равен:

= ,  r – радиус окружности

Тангенциальное ускорение направлено вдоль скорости и показывает быстроту изменения ее модуля.

Модуль тангенциального ускорения равен, = .

 

2. Угловое перемещение, угловая скорость, угловое ускорение.

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси (рис. 2). Тогда отдельные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка А движется по окружности радиуса R. Ее положение через промежуток времени Δt зададим углом Δφ.

Угловой скоростью вращения называется вектор, численно равный первой производной угла поворота тела по времени и направленный вдоль оси вращения по правилу правого винта:

   

Единица измерения угловой скорости радиан в секунду (рад/с).
Таким образом, вектор ω определяет направление и быстроту вращения. Если ω=const, то вращение называется равномерным.

Угловая скорость может быть связана с линейной скоростью υ произвольной точки А. Пусть за время Δt точка проходит по дуге окружности длину пути Δs. Тогда линейная скорость точки будет равна:


При равномерном вращении его можно охарактеризовать периодом вращения Т . Это– время, за которое точка тела совершает один полный оборот, т.е. поворачивается на угол 2π:

Число полных оборотов, совершаемых телом при равномерном движении по окружности, в единицу времени называется частотой вращения:

откуда  

Для характеристики неравномерного вращения тела вводится понятие углового ускорения. Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:


При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора угловой скорости (рис.); при ускоренном движении вектор ε направлен в ту же сторону, что и ω (dω/dt                                 > 0), и в противоположную сторону при замедленном вращении (dω/dt < 0).
В случае равнопеременного вращения:

 

3. Связь угловых и линейных величин. Уравнения кинематики вращательного движения.

Связь между линейными (длина пути, пройденного точкой по дуге окружности радиуса R, линейная скорость, тангенциальное ускорение, нормальное ускорение) и угловыми величинами (угол поворота, угловая скорость, угловое ускорение) выражается следующими формулами:

 

 

 

В случае равнопеременного движения точки по окружности (ε=const):

где ω0 - начальная угловая скорость.
Поступательное и вращательное движения твердого тела являются лишь простейшими типами его движения. В общем случае движение твердого тела может быть весьма сложным. Однако в теоретической механике доказывается, что любое сложное движение твердого тела можно представить как совокупность поступательного и вращательного движений.
Кинематические уравнения поступательного и вращательного движений сведены в табл. 1.

Задача 1. Тело вращается вокруг неподвижной оси по закону, выражаемому формулой φ = 10 + 20t - 2t2. Найти величину полного ускорения точки, находящейся на расстоянии 0,1 м от оси вращения для момента времени t=4 с (рис. 1.9).
Дано: φ = 10 + 20t - 2t2; R=0,1 м; t=4 с. Найти: a.

Краткие выводы

Тангенциальная составляющая ускорения характеризует быстроту изменения скорости по величине (направлена по касательной к траектории движения):

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению (направлена к центру кривизны траектории):

Полное ускорение при криволинейном движении – геометрическая сумма тангенциальной и нормальной составляющих:

Векторная величина, определяемая первой производной угла поворота тела по времени, называется угловой скоростью:

Вектор ω направлен вдоль оси вращения по правилу правого винта.

При равномерном вращении время, за которое точка тела совершает один полный оборот, т.е. поворачивается на угол 2π, называется периодом вращения:

Частота вращения – число полных оборотов, совершаемых телом при равномерном его движении по окружности в единицу времени:

Угловое ускорение – это векторная физическая величина, определяемая первой производной угловой скорости по времени:

При ускоренном вращении тела вокруг неподвижной оси вектор ε сонаправлен векторуω, при замедленном – противонаправлен ему.

Связь между линейными (длина пути s, пройденного точкой по окружности радиуса R, линейная скорость v, тангенциальное ускорение aτ, нормальное ускорение an) и угловыми характеристиками (угол поворота φ, угловая скорость ω, угловое ускорение ε) выражается следующими формулами:

Вопросы для самоконтроля и повторения

1. Что характеризуют тангенциальная и нормальная составляющие ускорения? Каковы их модули?

2. Как можно классифицировать движение в зависимости от тангенциальной и нормальной составляющих ускорения?

3. Что называется угловой скоростью и угловым ускорением? Как определяются их направления?

4. Какими формулами связаны между собой линейные и угловые характеристики движения?


Примеры решения задач

 

 

Задачи для самостоятельного решения

  1. Движения двух материальных точек описываются следующими уравнениями: x1 = 20 + 2t - 4t2 и x2 = 2 + 2t + 0,5t2. В какой момент времени скорости этих точек будут одинаковыми? Чему равны скорости и ускорения точек в этот момент?
  2. С высоты 1000 м падает тело без начальной скорости. Одновременно с высоты 1100 м падает другое тело с некоторой начальной скоростью. Оба тела достигают земли в один и тот же момент времени. Пренебрегая сопротивлением воздуха, найти начальную скорость второго тела.
  3. Велосипедист проехал первую треть пути со скоростью 10 м/с, затем половину пути со скоростью 6 м/с и оставшуюся часть пути со скоростью 2 м/с. Чему равна средняя скорость велосипедиста?
  4. Мяч бросили со скоростью 10 м/с по углом 400 к горизонту. Не учитывая сопротивления воздуха, найти: а) на какую высоту поднимется мяч? б) на каком расстоянии от места бросания мяч упадет на землю? в) сколько времени мяч будет в движении?
  5. Камень, брошенный горизонтально, упал на землю через 0,5 с на расстоянии 5 м по горизонтали от места бросания. Не учитывая сопротивления воздуха, определить: а) с какой высоты брошен камень? б) чему равна начальная скорость камня? в) с какой скоростью камень упал на землю? г) какой угол составляет траектория камня с горизонтом в точке его падения на землю?
  6. Колесо радиусом R=0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением ω = 2At + 5Bt4, где А=2 рад/с2 и В=1 рад/с5. Определить полное ускорение точек обода колеса через t=1 с после начала вращения и число оборотов, сделанных колесом за это время.
  7. Частота вращения колеса при равнозамедленном движении за t=1 мин уменьшилась от 300 до 180 об/мин. Определить: а) угловое ускорение колеса; б) число полных оборотов, сделанных колесом за это время.
  8. Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = A + Bt + Ct2 + Dt3 (В = 1 рад/с, С = 1 рад/с2, D = 1 рад/с3). Определить для точек на ободе колеса к концу второй секунды после начала движения: а) тангенциальное ускорение; б) нормальное ускорение; в) полное ускорение.
  9. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.
  10. Колесо, вращаясь равноускоренно, спустя 1 мин после начала движения приобретает скорость, соответствующую частоте 720 об/мин. Найти угловое ускорение колеса и число оборотов за эту минуту.

Угловое перемещение, угловая скорость и угловое ускорение

 

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдельные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 1). Ее положение через промежуток времени Δt зададим углом Δφ. Элементарные (бесконечно малые) повороты можно рассматривать как векторы (они обозначаются Δφ или dφ). Модуль вектора dφ равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т. е. подчиняется правилу правого винта (рис. 1). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или аксиальными векторами. Эти векторы не имеют определенных точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор ω направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор dφ (рис. 2). Размерность угловой скорости dim ω = Т-1, а ее единица — радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 1)

 

Рис.1

 

т.е

v=ωR

 

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен ωRsin(ω, R), а направление совпадает с направлением поступательного движения правого винта его вращения от ω к R.

 

Рис.2

 

Если ω=const, то вращение равномерное и его можно характеризовать периодом вращения Т - временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2π. Так как промежутку времени Δt=Т соответствует Δφ=2π, то ω=2π/T, откуда

Т = 2π/ω.

 

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

n= 1/T = ω/(2π),


откуда

ω = 2πn.


Угловым ускорением называется векторная величина, равная первой производной yгловой скорости по времени:

 

Рис.3

 

При вращении тела вокруг неподвижной оси вектор углового ускорения ε направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору ω (рис. 3), при замедленном - противонаправлен ему (рис. 4).

 

Рис.4

 

Тангенциальная составляющая ускорения aτ=dv/dt , v = ωR и

Нормальная составляющая ускорения

Значит, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение аτ, нормальное ускорение аn) и угловыми величинами (угол поворота φ, угловая скорость ω, угловое ускорение ε) выражается следующими формулами:

s = Rφ, v = Rω, аτ = R?, an = ω2R.

 

В случае равнопеременного движения точки по окружности (ω=const)

ω = ω0 ± ?t, φ = ω0t ± ?t2/2,

 

где ω0 — начальная угловая скорость.

 

 

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости XOY проекции vx и vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам:

В общем случае ускорение не совпадает по направлению с вектором скорости. Вектор ускорения а может быть представлен в виде 2-х взаимно перпендикулярных векторов: аn нормального ускорения, а тангенциального ускорения. а направлена вдоль касательной к траектории движения.

 

 

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением. Скалярный потенциал магнитного поля

где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

- нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению: светодиодное энергосберегающее освещение- качественно и доступно .

v – мгновенное значение скорости, r – радиус кривизны траектории в данной точке.

- тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением.

где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

Кроме центростремительного ускорения, важнейшими характеристиками равномерного движения по окружности являются период и частота обращения.

Вращательное движение тела или точки характеризуется углом поворота, угловой скоростью и угловым ускорением.

Угол поворота φ - это угол между двумя последовательными положениями радиуса вектора r, соединяющего тело или материальную точку с осью вращения. Угловое перемещение измеряется в радианах.

Угловая скорость (w) – векторная физическая величина, показывающая, как изменяется угол поворота в единицу времени и численно равная первой производной от угла поворота по времени, т.е

.

Направление вектора угловой скорости совпадает с направлением вектора углового перемещения, т.е. вектора, численно равного углу φ и параллельного оси вращения; оно определяется по правилу буравчика: если совместить ось буравчика с осью вращения и поворачивать его в сторону движения вращающейся точки, то направление поступательного перемещения буравчика определит направление вектора угловой скорости. Точка приложения вектора произвольна, это может быть любая точка плоскости, в которой лежит траектория движения. Удобно совмещать этот вектор с осью вращения.

При равномерном вращении численное значение угловой скорости не меняется, т.е. ω = const. Равномерное вращение характеризуется:

- периодом вращения Т, т.е. временем, за которое тело делает один полный оборот, период обращения измеряется в с;

- частотой, измеряемой в Гц и показывающей число оборотов в с;

- круговой (циклической,угловой) частотой (это та же самая угловая скорость).

Угловая скорость может меняться как по величине, так и по направлению. Векторная величина, характеризующая изменение угловой скорости в единицу времени и численно равная второй производной от углового перемещения по времени, называется угловым ускорением:

Если положение и радиус окружности, по которой происходит вращение не изменяется со временем, то направление векторов углового ускорения и угловой скорости совпадают, если вращение ускоренное, и противоположны, если вращение замедленное.

При равномерном движении по окружности тангенциальная составляющая ускорения равна нулю, т.е. модуль линейной скорости постоянен и определяется соотношением Но т.к. направление скорости постоянно изменяется, то существует нормальное ускорение Т.о., линейная скорость направлена по касательной к окружности в каждой точке по движению; ускорение перпендикулярно скорости и направлено к центру кривизны.

Связь между линейными и угловыми величинами, характеризующими движение

Отдельные точки вращающегося тела имеют различные линейные скорости v, которые непрерывно изменяют свое направление и зависят от угловой скорости ω и расстояния r соответствующей точки до оси вращения. Точка, находящаяся на расстоянии r от оси вращения проходит путь ΔS = rΔφ. Поделим обе части равенства на

Переходя к пределам при , получим или .

Таким образом, чем дальше отстоит точка от оси вращения, тем больше ее линейная скорость. По определению ускорения, или

что значения линейной скорости, тангенциального и нормального ускорений растут по мере удаления от оси вращения. Формула устанавливает связь между модулями векторов v, r, ω, которые перпендикулярны друг к другу.

Статика изучает законы равновесия системы тел. Материальная точка - тело, обладающее массой, размерами которого в данной задаче можно пренебречь. Абсолютно твердым телом называется тело, которое ни при каких условиях не может деформироваться и при всех условиях расстояние между двумя точками (или точнее между двумя частицами) этого тела остается постоянным. Поступательное движение - это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению.

 

Прямолинейное движение n = 0

Криволинейное движение
(движение материальной точки по окружности)

Равномерное Равнопеременное Равномерное

Равнопеременное

         

 

 


Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль скорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту)

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1.), а l – длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2). брошенного под углом к горизонту).

Рис. 1. Траектория и вектор перемещения при криволинейном движении.

Рис. 2 Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это тангенциальное ускорение:


или

Где vτ, v0 – величины скоростей в момент времени t0 + Δt и t0 соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).
1. Скорость движения материальной точки

,

где - радиус-вектор точки.

2. Ускорение материальной точки

,

,

где - тангенциальное ускорение, - нормальное ускорение.

3. Тангенциальное ускорение

4. Нормальное ускорение

,

где - радиус кривизны траектории.

5. для равнопеременного движения

Выразив из второго равенства и подставив в первое, получим полезную формулу

 

Задача 1.
Снаряд вылетает из орудия с начальной скоростью 490 м/с под углом 300 к горизонту. Найти высоту, дальность и время полета снаряда, не учитывая его вращение и сопротивление воздуха.
Дано:
м/с

Найти:
Свяжем ИСО с орудием.

Составляющие скорости по осям Ox и Oy в начальный момент времени равны:

- остается неизменной во все время полета снаряда,

- меняется согласно уравнению равнопеременного движения

.

В наивысшей точке подъема , откуда

Полное время полета снаряда

c.

Высоту подъема снаряда определим из формулы пути равно замедленного движения

м.

Дальность полета определим как

м.


Задача 2.
Из точки А свободно падает тело. Одновременно из точки В под углом к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе. Показать, что угол не зависит от начальной скорости тела, брошенного из точки В, и определить этот угол, если . Сопротивлением воздуха пренебречь.

Решение задачи.
Дано:
Найти:
Свяжем ИСО с точкой В.

Оба тела могут встретиться на линии ОА (см. рис.) в точке С. Разложим скорость тела, брошенного из точки В, на горизонтальную и вертикальную составляющие:
; .
Пусть от начала движения до момента встречи пройдет время

.
За это время тело из точки А опуститься на величину
,
а тело из точки В поднимется на высоту

.
Решая последние два уравнения совместно, находим
.
Подставляя сюда ранее найденное время, получим
,
т.е. угол бросания не зависит от начальной скорости.

 

 


Задача 3.
С башни брошено тело в горизонтальном направлении со скоростью 40 м/с. Какова скорость тела через 3 с после начала движения? Какой угол образует с плоскостью горизонта вектор скорости тела в этот момент?


Решение задачи.

Найти:

Дано: м/с. c.

Свяжем ИСО с башней.

Тело одновременно участвует в двух движениях: равномерно в горизонтальном направлении со скоростью и в свободном падении со скоростью . Тогда полная скорость тела есть

Направление вектора скорости определяется углом . Из рисунка видим, что


 

.


Дата добавления: 2022-01-22; просмотров: 84; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!