Информационные источники (основные учебники по предмету)

Группа № 23              ФИЗИКА     

Урок 11

Тема: Свойства электромагнитных волн. Радиолокация. Понятие о телевидении.

Цели: познакомить студентов со свойствами электромагнитные волны, с практическим применением свойств электромагнитных волн на примерах радиолокации и телевидения.

Задачи урока:

- рассмотреть физические принципы работы радиолокационной установки, ее практическое применение;

- выяснить роль телевидения в жизни мирового сообщества;

- продолжить формирование познавательного интереса к физике и позитивного отношения к учёбе;

- формировать умение обобщать, сравнивать, анализировать и самостоятельно делать выводы; развивать умение работать с различными источниками учебной информации.

ПЛАН

  1. Изучение нового материала

1) Проработка теоретического материала

2) Просмотр видео

 

 

1. Проработать теоретический материал и написать краткий конспект лекции

Электромагнитная волна– это меняющееся с течением времени и распространяющееся в пространстве электромагнитное поле.

Первое самое важное свойство, электромагнитных волн непосредственно вытекает из открытых Максвеллом законов электромагнетизма — это вывод о конечности скорости распространения электромагнитных волн. Т.е. если в какой-либо малой области пространства будет периодически изменять электрическое и магнитное поля, то эти изменения будут повторяться и в других точках пространства, причем в каждой последующей несколько позже, чем в предыдущей.

Максвелл чисто математически показал, что скорость такого распространения в вакууме зависит только от диэлектрической и магнитной постоянных, т.е. равна скорости света.

А в среде эта скорость меньше и зависит как от диэлектрической, так и от магнитной проницаемостей среды.

Вот что по этому поводу писал сам Максвелл в письме Уильяму Томсону: «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли может отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений».

Под периодическими изменениями электрического и магнитного полей понимают колебания векторов напряженности электрического поля и индукции магнитного поля. Так вот, оказывается, что колебания этих векторов происходят перпендикулярно вектору скорости распространения электромагнитной волны. Отсюда, мы можем сделать вывод о том, что электромагнитная волна — это поперечная волна. Это и есть второе свойство электромагнитной волны.

Третье свойство непосредственно вытекает из второго. Так как электромагнитная волна является поперечной, то колебания векторов напряженности электрического поля и индукции магнитного поля в каждой точке электромагнитной волны происходят в одинаковых фазах и по двум взаимно перпендикулярным направлениям.

Помимо выше сказанного, вектора напряженности электрического поля и индукции магнитного поля образуют с вектором скорости распространения, так называемую, правовинтовую систему. Т.е. если расположить головку правого винта в плоскости векторов напряженности электрического поля и индукции магнитного поля и будем ее поворачивать по кратчайшему пути в направлении от вектора к вектору , то поступательное движение острия винта укажет нам направление вектора скорости в данный момент времени. Это есть четвертое свойство электромагнитной волны.

Пятое свойство говорит о том, что период электромагнитной волны равен периоду колебаний источника электромагнитных волн. Для электромагнитных волн справедливы те же соотношения между длиной волны, ее скоростью, периодом и частотой колебаний, что и для механических волн. Т.е. справедливы соотношения:

Электромагнитная волна, как и упругая, является носителем энергии, причем перенос энергии совершается в направлении распространения волны — это шестое свойство.

Энергию электромагнитной волны можно рассчитать по формуле

где V —объем среды, в котором сосредоточена электромагнитная волна.

При этом переносимая электромагнитной волной энергия пропорциональна четвертой степени частоты. В связи с этим, источником интенсивных электромагнитных волн, т.е. волн, способных переносить энергию на большие расстояния, должны быть электромагнитные колебания с частотой порядка 106 Гц. Однако никакие современные генераторы не могут создать переменный ток такой частоты, так как в этом случае якорь генератора должен совершать миллион оборотов в секунду. Поэтому источником интенсивных электромагнитных волн такой частоты может быть только колебательный контур, циклическая частота колебаний которого, согласно формуле, будет тем больше, чем меньше индуктивность и емкость контура.

Седьмое свойство говорит о том, что электромагнитные волны в однородной среде распространяются прямолинейно, при переходе из одной среды в другую испытывают преломление и отражаются от преград.

В свое время все эти работы Максвелла вызвали шок среди ученых. Сам Фарадей с удивлением писал: «Сначала я даже испугался, когда увидел такую математическую силу, примененную к вопросу, но потом удивился, видя, что вопрос выдерживает это столь хорошо».

К сожалению, Максвелл не дожил до надежного экспериментального подтверждения своих расчетов.Международное научное мнение изменилось в результате опытов Генриха Герца, который только через 20 лет в серии своих экспериментов продемонстрировал генерацию и прием электромагнитных волн.

Он разработал удачную конструкцию генератора электромагнитных колебаний (вибратор Герца) и метод их обнаружения способом резонанса. Это устройство представляет собой открытый колебательный контур, который можно получить из закрытого путем раздвижения пластин конденсатора и уменьшением их площади до тех пор, пока не получится просто прямой провод.

В таком открытом контуре заряды не сосредоточены на его концах, а распределяются по всему проводнику, при этом ток в данный момент времени во всех сечениях проводника будет направлен в одну и ту же сторону. Однако сила тока в различных сечениях проводника неодинакова — на концах она равна нулю, а в центре — максимальная.

Для возбуждения колебаний в таком открытом контуре, во времена Герца, поступали следующим образом: провод разрезали посредине так, чтобы оставался небольшой промежуток. При подаче от индукционной катушки высокого напряжения в промежутке проскакивала искра, которая и закорачивала его. За время горения искры, в контуре совершалось большое количество колебаний. Приемник (его еще называют резонатор) также состоял из проволоки с искровым промежутком. Наличие резонанса выражалось в возникновении искр в искровом промежутке резонатора в ответ на искру, возникающую в вибраторе.

В результате проделанных Герцем опытов были также обнаружены все свойства электромагнитных волн, теоретически предсказанные Максвеллом. Однако сам Герц считал, что полученные им электромагнитные волны невозможно использовать в больших масштабах и тем более передавать с их помощью какую-либо информацию.

Таким образом, Генрих Герц завершил огромный труд, начатый Фарадеем. Максвелл преобразовал представления Фарадея в математические формулы, а Герц превратил математические образы в видимые и слышимые нами электромагнитные волны. Слушая радио, просматривая телевизионные передачи, все должны помнить об этом человеке. Не случайно единица частоты колебаний названа в честь Герца, и совсем не случайно первыми словами, переданными русским физиком А.С. Поповым с помощью беспроводной связи, были "Генрих Герц", зашифрованные азбукой Морзе.

Любопытно, но за семь лет до Герца, в 1879 году английский физик Дэвид Эдвард Хьюз также продемонстрировал перед крупными учеными эффект распространения электромагнитных волн в воздухе. Однако, в результате многочисленных обсуждений, ученые решили, что видят явление электромагнитной индукции Фарадея. Хьюз расстроился, не поверил самому себе и опубликовал результаты лишь в 1899 году, когда теория Максвелла-Герца уже стала общепринятой.

На данный момент известно, что буквально всё пространство вокруг нас пронизано электромагнитными волнами различных частот. В настоящее время все электромагнитные волны разделены по длинам волн (и, соответственно, по частотам) на шесть основных диапазонов.

Границы этих диапазонов весьма условны, потому как в большинстве случаев соседние диапазоны несколько перекрывают друг друга.

Электромагнитные волны разных частот отличаются друг от друга проникающей способностью, скоростью распространения в веществе, видимостью, цветностью и некоторыми другими свойствами.

В настоящее время электромагнитные волны находят широкое применение в науке и технике:

– плавка и закалка металлов, изготовление постоянных магнитов;

– телевидение и радиосвязь;

– мобильная связь и радиолокация;

– сварка, резка и плавка металлов лазерами, приборы ночного видения;

– освещение и голография;

– люминесценция в газоразрядных лампах и закаливание живых организмов;

– рентгенотерапия;

– дефектоскопия и исследование внутренней структуры атомов;

– и многое-многое другое.

Свойство отражения электромагнитных волн используется в радиолокации.

Распространение радиоволн зависит от их длины волны.

Радиолокация - обнаружение и точное определение местонахождения объектов с помощью радиоволн. Радиолокационная установка (радиолокатор) состоит из передающей и приёмной частей.

От передающей антенны идёт электромагнитная волна, доходит до объекта и отражается.

Радиолокаторы используют в военных целях, а также службой погоды для наблюдения за облаками. С помощью радиолокации исследуются поверхности Луны, Венеры и других планет.

Радиоволны используются для передачи не только звука, но и изображения (телевидение).

На передающей станции производится преобразование изображения в последовательность электрических сигналов, которые модулируют колебания, вырабатываемые генератором высокой частоты. Модулированная электромагнитная волна переносит информацию на большие расстояния. В приемнике высокочастотные модулированные колебания детектируются, а полученный сигнал преобразуется в видимое изображение.

2. Просмотреть видео:

1. https://youtu.be/z2UBJ4Tbvww

2. https://youtu.be/ttIp-aY6N-0

Домашнее задание : Учить § 39 -41. Ответить на вопросы:

  1. Почему зимой и ночью радиоприем лучше, чем летом и днем?
  2. Почему башни телецентра строят высокими?
  3. Почему нельзя осуществить радиосвязь между подводными лодками, находящимися на некоторой глубине в океане?

Информационные источники (основные учебники по предмету)

1. Мякишев Г.Я. Физика. 11класс. Учеб. для общеобразоват. организаций: базовый уровень / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой – М.: Просвещение, 2016. – 432 с.: ил. – (Классический курс).

2. https://uchebnik-skachatj-besplatno.com/Физика/Учебник%20Физика%2011%20класс%20Мякишев%20Буховцев%20Чаругин/index.html

 

Ресурсы сети Интернет

Ответ отправить на адрес электронной почты:

petricholga@mail.ru


Дата добавления: 2021-12-10; просмотров: 22; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!