ДАЛЬНОСТЬ ПОЛЕТА ТЕЛА, БРОШЕННОГО ПОД УГЛОМ К ГОРИЗОНТУ

Группа № 11     ФИЗИКА  

Урок № 15

 

Тема: Движение тела, брошенного под углом к горизонту.

Цели: рассмотреть понятия и закономерности движения тела, брошенного под углом к горизонту.

Задачи урока:

- Выяснить каковы особенности движения тела, как выглядит график движения, как изменяется скорость, координаты тела, брошенного под углом к горизонту.

- Уметь применять полученные знания к решению задач.

ПЛАН

1. Проработка теоретического материала

2. Решение задач

Теоретический материал

Движение тела, брошенного под углом к горизонту

Рассмотрим случай, когда тело, движущееся под действием силы тяжести, имеет начальную скорость, направленную под некоторым углом к горизонту. Примерами такого движения могут служить: движение мяча, брошенного под различными углами к горизонту; движение снаряда, выпущенного из пушки; движение лыжника при прыжке с трамплина; движение воды из шланга и т. п.

ТРАЕКТОРИЯ ДВИЖЕНИЯ ТЕЛА, БРОШЕННОГО ПОД УГЛОМ К ГОРИЗОНТУ

Движение тела, брошенного под углом к горизонту, можно разбить на два этапа.

На первом этапе при движении от начала траектории до точки, соответствующей наибольшей высоте подъёма, скорость тела уменьшается. На втором этапе тело будет двигаться вниз, аналогично движению тела, брошенного горизонтально.

Внимание учёных к такому виду движения начиная с XVI в. объяснялось необходимостью развития баллистики — науки о движении снарядов, выпущенных из огнестрельного оружия, и в частности развития теории полёта пушечных ядер. Итальянский математик Н. Тарталья в своих сочинениях впервые утверждает, что траектория пушечного ядра является кривой линией, тогда как его предшественники считали, что она состоит из двух прямых, соединённых кривой линией.

Точную форму траектории тела, брошенного под утлом к горизонту, установил великий Галилей спустя почти сто лет после Тартальи. Именно он доказал, что траектории снарядов, если пренебречь сопротивлением воздуха, представляют собой параболы.

Рассмотрим движение тела, брошенного под углом а к горизонту. Пусть при этом точка бросания тела и точка его падения лежат на горизонтальной прямой. Сопротивлением воздуха пренебрегаем. Это движение также можно представить как сумму двух движений, протекающих независимо друг от друга: равномерного движения вдоль оси ОХ и движения под действием силы тяжести вдоль оси OY.

Введём следующие обозначения: ʋ0 — начальная скорость, h — максимальная высота подъёма тела, l — дальность полёта.

Обозначим проекцию начальной скорости ʋ0 на ось ОХ через ʋ0x и на ось OY через ʋ0y. Поскольку движение вдоль оси ОХ является равномерным, то проекция скорости на эту ось остаётся неизменной: ʋ0x = ʋx.

ВЫСОТА ПОДЪЕМА ТЕЛА, БРОШЕННОГО ПОД УГЛОМ К ГОРИЗОНТУ

Поднимаясь вверх, тело движется равнозамедленно, и его скорость в момент времени t можно найти по формуле ʋ = ʋ0 + gt. Рассмотрим движение тела вдоль оси ОУ. Получаем, что

Обозначим максимальную высоту подъёма тела как h, а момент времени, в который тело достигло наибольшей высоты, через tпод. Поскольку в наивысшей точке траектории ʋy = 0, то

Воспользовавшись уравнением движения тела, получим

Подставив выражение (2) в выражение (3), получим

При отсутствии сопротивления воздуха время tпод, затраченное телом на подъём, составляет половину всего времени движения тела, т. е. оно равно времени от момента, когда тело достигает максимальной высоты, до момента падения тела.

ДАЛЬНОСТЬ ПОЛЕТА ТЕЛА, БРОШЕННОГО ПОД УГЛОМ К ГОРИЗОНТУ

Учитывая, что движение вдоль горизонтальной оси равномерное, дальность полёта I можно найти по формуле

где t — время полёта тела.

С учётом формулы (3) можно записать:

Подставив выражение (5) в формулу (4), получим

Полученное выражение свидетельствует о том, что при одном и том же значении начальной скорости дальность полёта зависит от значений проекций ʋx и ʋ0x и, следовательно, от величины угла а. В геометрии доказывается, что максимальное значение l достигается для угла а = 45.

Именно Н. Тарталья впервые установил, что наибольшая дальность полёта тела, брошенного под углом к горизонту, достигается под углом 45°. Этот результат он получил, пытаясь ответить на вопрос своего друга-артиллериста, под каким углом необходимо устанавливать ствол пушки для наибольшей дальности полёта ядра.

При одном и том же значении начальной скорости величина проекции ʋy будет тем больше, чем больше угол а. При этом с увеличением угла а величина проекции ʋx уменьшается.

Когда тело бросают вверх под углом к горизонту, оно сначала равнозамедленно поднимается, а затем равноускорено падает. При этом оно перемещается относительно земли с постоянной скоростью.

Важные факты! График движения тела, брошенного под углом к горизонту:

α — угол, под которым было брошено тело

1. Вектор скорости тела, брошенного под углом к горизонту, направлен по касательной к траектории его движения.

2. Так как начальная скорость направлена не вдоль горизонтальной линии, обе ее проекции отличны от нуля. Проекция начальной скорости на ось ОХ равна v0x = v0cosα. Ее проекция на ось ОУ равна v0y = v0sinα.

3. Проекция мгновенной скорости на ось ОХ равна: vx = v0 cosα. Ее проекция на ось ОУ равна нулю: vy = v0sinα – gt.

4. Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.

Пример

1. Небольшой камень бросили с ровной горизонтальной поверхности под углом к горизонту. На какую максимальную высоту поднялся камень, если ровно через 1 с после броска его скорость была направлена горизонтально?

Скорость направляется горизонтально в верхней точке полета. Значит, время подъема равно 1 с. Из формулы времени подъема выразим произведение начальной скорости на синус угла, под которым было брошено тело:

v 0 sinα = gt под

Подставим полученное выражение в формулу для определения наибольшей высоты подъема и сделаем вычисления:

Тело, брошенное под углом к горизонту с некоторой высоты

Когда тело бросают под углом к горизонту с некоторой высоты, характер его движения остается прежним. Но приземлится оно дальше по сравнению со случаем, если бы тело бросали с ровной поверхности.

Важные факты!

График движения тела, брошенного под углом к горизонту с некоторой высоты:

Время падения тела больше времени его подъема: t пад > t под .

Полное время полета равно:

t полн = t пад + t под

Уравнение координаты x:

x = v 0 cosα t

Уравнение координаты y:

Пример

1. С балкона бросили мяч под углом 60 градусов к горизонту, придав ему начальную скорость 2 м/с. До приземления мяч летел 3 с. Определить дальность полета мяча.

Косинус 60 градусов равен 0,5. Подставляем известные данные в формулу:

x = v0 cosα t = 2 ∙ 0,5 ∙ 3 = 3 м.

Домашнее задание: проработать конспект, учить § 13.


Дата добавления: 2021-12-10; просмотров: 97; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!