Телескоп Максутова - Кассегрена .



В 1941г. Д. Д. Максутов нашел, что сферическую аберрацию сферического зеркала можно компенсировать мениском большой кривизны. Найдя удачное расстояние между мениском и зеркалом, Максутов сумел избавиться от комы и астигматизма. Кривизну поля, как и в камере Шмидта, можно устранить, установив вблизи фокальной плоскости плоско-выпуклую линзу - так называемую линзу Пиацци-Смита. Проалюминировав центральную часть мениска, Максутов получил менисковые аналоги телескопов Кассегрена и Грегори. Были предложены менисковые аналоги практически всех интересных для астрономов телескопов

Телескоп Максутова - Кассегрена диаметром 150 мм.

В 1995г для оптического интерферометра введен в строй первый телескоп с 8м зеркалом (из 4 -х) с базой 100м (пустыне АТАКАМА, Чили; ESO).

В 1996г первый телескоп диаметром 10м (из двух с базой 85м) им. У. Кека введен в обсерватории Маун – Кеа (Калифорния, Гавайские острова, США)

2. - преимущества : в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических. Представляют собой чашу (подобие локатора).

Радиоастрономия получило развитие после войны. Наибольшие сейчас радиотелескопы это неподвижные РАТАН- 600, Россия (вступил в строй в 1967г в 40 км от оптического телескопа, состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м), Аресибо (Пуэрто –Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Из подвижных имеют два радиотелескопа 100м чашу.

Особое значение в наш космический век придается орбитальным обсерваториям . Наиболее известная из них – космический телескоп им . Хаббла – запущен в апреле 1990 года и имеет диаметр 2,4 м. После установки в 1993 году корректирующего блока телескоп регистрирует объекты вплоть до 30-й звездной величины, а его угловое увеличение – лучше 0,1" (под таким углом видна горошина с расстояния в несколько десятков километров).

Принципиальная схема телескопа им. Хаббла.

 

l. Закрепление материала .

1. Какие сведения астрономические вы изучали в курсах других предметов? (природоведение, физики, истории и т.д.)

2. Что нового узнали?

3. Что такое астрономия? Особенности астрономии и т.д.

4. В чем специфика астрономии по сравнению с другими науками о природе?

5. Какие типы небесных тел вам известны?

6. Каковы объекты познания в астрономии?

7. Какие методы и инструменты познания в астрономии Вам известны?

8. Назначение телескопа и его виды

9. Какое значение в народном хозяйстве имеет сегодня астрономия?

 

Значения в народном хозяйстве:

• - Ориентирование по звездам для определения сторон горизонта

• - Навигация (мореходство, авиация, космонавтика) - искусство прокладывать путь по звездам

• - Исследование Вселенной с целью понять прошлое и спрогнозировать будущее

• - Космонавтика:

• - Исследование Земли с целью сохранения ее уникальной природы

• - Получение материалов, которые невозможно получение в земных условиях

• - Прогноз погоды и предсказание стихийных бедствий

• - Спасение терпящих бедствие судов

• - Исследования других планет для прогнозирования развития Земли

 

1. Посмотреть Календарь Наблюдателя, пример астрономического журнала (электронного, например Небосвод).

2. В Интернете зайти на , найти лекции по астрономии, посмотреть астроссылки Астротоп , портал:Астрономия в Википедии , - используя которые можно получить информации по интересующему вопросу или найти её.

 

Солнце, Луна, планеты, кометы, звезды, туманности, галактики, отдельные небесные тела и системы таких тел изучаются в астрономии. Разнообразны задачи, стоящие перед астрономами, а в связи с этим разнообразны и методы астрономических наблюдений, доставляющих основной материал для решения этих задач.

 

Уже в глубокой древности начались наблюдения с целью определения положений светил на небесной сфере. Сейчас этим занимается астрометрия. Измеренные в результате таких наблюдений небесные координаты звезд разных типов, звездных скоплений, галактик сводятся в каталоги, по ним составляются звездные карты (см. Звездные каталоги, карты и атласы). Повторяя в течение более или менее длительного периода времени наблюдения одних и тех же небесных тел, вычисляют собственные движения звезд, тригонометрические параллаксы и др. Эти данные также публикуются в каталогах.

Составленные таким образом звездные каталоги используются как в практических целях - при астрономических наблюдениях движущихся небесных тел (планет, комет, искусственных космических объектов), при работах службы времени, службы движения полюсов, в геодезии, навигации и др., так и при разного рода научно-исследовательских работах. К числу последних относятся, в частности, исследования структуры Галактики, происходящих в ней движений, чем занимается звездная астрономия.

Систематические астрометрические наблюдения планет, комет, астероидов, искусственных космических объектов доставляют материал для изучения законов их движения, составления эфемерид, для решения других задач небесной механики, астродинамики, геодезии, гравиметрии.

К астрометрическим наблюдениям можно отнести также и вошедшие в практику в последние десятилетия дальномерные наблюдения небесных светил. С помощью лазерных дальномеров с высокой точностью определяются расстояния до искусственных спутников Земли (см. Лазерный спутниковый дальномер), до Луны.

Методы радиолокационной астрономии дают возможность определять расстояния и даже изучать профили Луны, Венеры, Меркурия и т. п.

Другим типом астрономических наблюдений является непосредственное изучение вида таких небесных тел, как Солнце, Луна, ближайшие планеты, галактические туманности, галактики и др. Наблюдения этого типа стали развиваться после изобретения телескопа. Вначале наблюдения велись визуально: небесные светила рассматривались глазом и увиденное зарисовывалось. Позже стала использоваться фотография. Фотографические методы имеют неоспоримое преимущество перед визуальными: фотографии можно детально измерять в спокойной лабораторной обстановке; в случае необходимости их можно повторить, да и вообще фотография является объективным документом, в то время как в визуальные наблюдения наблюдатель вносит много субъективного. Кроме того, фотографическая пластинка, в отличие от глаза, накапливает приходящие от источника фотоны и потому позволяет получать снимки слабых объектов.

На рубеже XIX и XX вв. зародились и стали быстро развиваться астрофизические методы наблюдений, в основе которых лежит анализ электромагнитного излучения Небесного светила, собранного телескопом. Для такого анализа используются различные светоприемни-ки и другие приспособления.

С помощью астрофотометров разного типа регистрируют изменения блеска небесных светил и таким путем обнаруживают переменные звезды, определяя их тип, двойные звезды, в сочетании с результатами других наблюдений делают определенные заключения о процессах, происходящих в звездах, туманностях и т. д.

Широкую информацию о небесных светилах дают спектральные наблюдения. По распределению энергии в непрерывном спектре (см. Электромагнитное излучение небесных тел), по виду, ширине и другим характеристикам спектральных линий и полос судят о температуре, химическом составе звезд и других небесных светил, о движениях вещества в них, об их вращении, о наличии магнитных полей, наконец, о стадии их эволюционного развития и о многом другом.

Рисунок (см. оригинал).

Измерения смещения спектральных линий вследствие эффекта Доплера позволяют определять лучевые скорости небесных тел, которые используются при разнообразных астрономических исследованиях.

При астрофизических наблюдениях широко используются электронно-оптические преобразователи, фотоэлектронные умножители, электронные камеры, телевизионная техника (см. Телевизионный телескоп), позволяющие значительно увеличить проницающую силу телескопов, расширить диапазон воспринимаемого телескопом электромагнитного излучения небесных тел.

Астрономические наблюдения в радиодиапазоне электромагнитного излучения ведутся с помощью радиотелескопов. Специальная аппаратура используется для регистрации инфракрасного и ультрафиолетового излучения, для нужд рентгеновской астрономии и гамма-астрономии. Качественно новые результаты получают с помощью астрономических наблюдений, выполняемых с борта космических аппаратов (так называемая внеатмосферная астрономия).

Большинство описанных астрономических наблюдений выполняется на астрономических обсерваториях специально подготовленными научными и техническими работниками. Но отдельные виды наблюдений доступны и любителям астрономии.

Юные астрономы могут проводить наблюдения для расширения кругозора, для приобретения опыта научно-исследовательских работ. Но многие виды правильно организованных наблюдений, выполняемых в точном соответствии с инструкциями, могут иметь и существенное научное значение.

Школьным астрономическим кружкам доступны следующие астрономические наблюдения:

1. Исследования солнечной активности с помощью школьного телескопа-рефрактора (помните* что смотреть на Солнце без темного фильтра ни в коем случае нельзя!).

2. Наблюдения Юпитера и его спутников с зарисовкой деталей в полосах Юпитера, Красного пятна.

3. Поиски комет с помощью светосильных оптических инструментов с достаточно большим полем зрения.

4. Наблюдения серебристых облаков, изучения частоты их появления, формы и т. п.

5. Регистрация метеоров, счет их количества, определение радиантов.

6. Исследования переменных звезд - визуально и на фотографиях звездного неба.

7. Наблюдения солнечных и лунных затмений.

8. Наблюдения искусственных спутников Земли.

Инструкции для организации наблюдений можно найти среди книг, перечисленных в списке рекомендованной литературы. Ряд практических советов приведен в словаре.

Основной способ исследования небесных объектов и явлений . Наблюдения могут вестись невооруженным глазом или с помощью оптических инструментов: телескопов, снабженных теми или иными приемниками радиации (спектрографами, фотометрами и т.п.), астрографов, специальных инструментов (в частности, биноклей). Цели наблюдений весьма разнообразны. Точные измерения положении звезд, планет и других небесных тел дают материал для определения расстояний до них (см. Параллакс), собственных движений звезд, изучения законов движения планет, комет. Результаты измерений видимого ’блеска светил (визуально или с помощью астрофотометров) позволяют оценивать расстояния до звезд, звездных скоплений, галактик, изучать процессы, происходящие в переменных звездах, и т.д. Исследования спектров небесных светил с помощью спектральных приборов позволяют измерять температуру светил, лучевые скорости, дают неоценимый материал для глубокого изучения физики звезд и других объектов.

Но результаты астрономических наблюдений имеют научную значимость только в том случае, когда безусловно выполняются положения инструкций, которые определяют порядок действия наблюдателя, требования к инструментам, месту наблюдения, к форме регистрации данных наблюдения.

К методам наблюдений, доступным юным астрономам, относятся визуальные без инструментов, визуальные телескопические, фотографические и фотоэлектрические наблюдением небесных объектов и явлений. В зависимости от инструментальной базы, положения 1унктов наблюдения (город, поселок, село), 1строклиматических условий и интересов любителя для наблюдений может быть выбрана любая (или несколько) из предлагаемых тем.

Наблюдения солнечной активности . При наблюдении солнечной активности ежедневно зарисовываются солнечные пятна и определяются их координаты с помощью заранее заготовленной угломерной сетки. Проводить наблюдения лучше всего с помощью большого школьного телескопа-рефрактора или самодельного телескопа на параллактическом штативе (см. Телескоп самодельный). Нужно всегда помнить, что смотреть на Солнце без темного (защитного) фильтра ни в коем случае нельзя. Удобно вести наблюдения Солнца, проецируя его изображение на специально приспособленный к телескопу экран. На бумажном шаблоне обводят контуры групп пятен и отдельных пятен, отмечают поры. Затем вычисляются их координаты, подсчитывается число пятен в группах и на момент наблюдений выводится индекс солнечной активности — числа Вольфа. Наблюдатель изучает и все изменения, происходящие внутри группы пятен, стремясь как можно точнее передать их форму, размеры, взаимное расположение деталей. Наблюдать Солнце можно и фотографически с применением в телескопе дополнительной оптики, увеличивающей эквивалентное фокусное расстояние прибора и позволяющей поэтому фотографировать более крупно отдельные образования на его поверхности. Пластинки и пленки для фотографирования Солнца должны иметь самую малую чувствительность.

Наблюдения Юпитера и его спутников. При наблюдении планет, в частности Юпитера, используют телескоп с диаметром объектива или зеркала не менее 150 мм. Наблюдатель тщательно зарисовывает детали в полосах Юпитера и сами полосы и определяет их координаты. Проведя наблюдения в течение ряда ночей, можно изучить картину изменений в облачном покрове планеты. Интересным для наблюдения на диске Юпитера является Красное пятно, физическая природа которого пока не совсем изучена. Наблюдатель зарисовывает положение Красного пятна на диске планеты, определяет его координаты, приводит описания цвета, яркости пятна, регистрирует замеченные особенности в окружающем его облачном слое.

Для наблюдении спутников Юпитера используется школьный телескоп-рефрактор. Наблюдатель определяет точное положение спутников относительно края диска планеты с помощью окулярного микрометра. Кроме того, представляет интерес наблюдение явлений в системе спутников и регистрация моментов этих явлений. К ним относятся затмение спутников, заход за диск планеты и выход из-за диска, прохождение спутника между Солнцем и планетой, между Землей и планетой.

Поиски комет и их наблюдения . Поиски комет производятся с помощью светосильных оптических инструментов с большим полем зрения (3-5°). Для этой цели могут быть использованы полевые бинокли, астрономическая трубка АТ-1, бинокуляры ТЗК, БМТ-110, а также кометоискатели.

Наблюдатель систематически осматривает западную часть неба после захода Солнца, северную и зенитную области неба ночью и восточную перед восходом Солнца. Наблюдатель должен очень хорошо знать расположение на небе стационарных туманных объектов — газовых туманностей, галактик, звездных скоплений, которые по внешнему виду напоминают слабую по яркости комету. В этом случае ему окажут помощь атласы звездного неба, в частности «Учебный звездный атлас» А. Д. Марленского и «Звездный атлас» А. А. Михайлова. О появлении новой кометы тотчас же дается телеграмма в адрес Астрономического института им, П. К., Штернберга в Москве. Нужно сообщать время обнаружения кометы, ее приближенные координаты, фамилию и имя наблюдателя, его почтовый адрес.

Наблюдатель должен зарисовать положение кометы среди звезд, изучить видимую структуру головы и хвоста кометы (если они имеют место), определить ее блеск. Фотографирование области неба, где находится комета, позволяет более точно, чем при зарисовке, определить ее координаты, а следовательно, рассчитать более точно орбиту кометы. Телескоп при фотографировании кометы должен быть снабжен часовым механизмом, ведущим его за звездами, перемещающимися вследствие видимого вращения неба.

Наблюдения серебристых облаков . Серебристые облака — интереснейшее, но еще малоизученное явление природы. В СССР наблюдаются они в летнее время севернее 50° широты. Их можно увидеть на фоне сумеречного сегмента, когда угол погружении Солнца под горизонт составляет от 6 до 12°. В это время солнечные лучи освещают только верхние слои атмосферы, где на высоте 70-90 км и образуются серебристые облака. В отличие от обычных облаков, которые в сумерках кажутся темными, серебристые облака светятся. Они наблюдаются в северной стороне неба, невысоко над горизонтом.

Наблюдатель каждую ночь осматривает через 15-минутные интервалы сумеречный сегмент и в случае появления серебристых облаков оценивает их яркость, регистрирует изменения формы, при помощи теодолита или другого угломерного инструмента замеряет протяженность поля облаков по высоте и азимуту. Кроме того, целесообразно фотографировать серебристые облака. Если светосила объектива 1:2 и чувствительность пленки 130-180 единиц по ГОСТу, то хорошие снимки можно получить при экспозиции 1—2 с. На снимке должны быть видны основная часть поля облаков и силуэты строений или деревьев.

Целью патрулирования сумеречного сегмента и наблюдений серебристых облаков является выяснение частоты появления облаков, преобладающих форм, динамики поля серебристых облаков, а также отдельных образований внутри поля облаков.

Наблюдения метеоров . Задачами визуальных наблюдений является счет метеоров и определение метеорных радиантов. В первом случае наблюдатели располагаются под круглой рамкой, ограничивающей поле зрения до 60°, и регистрируют только те метеоры, которые появляются внутри рамки. В журнале наблюдений записывается порядковый номер метеора, момент пролета с точностью до одной секунды, звездная величина, угловая скорость, направление метеора и его положение относительно рамки. Эти наблюдения позволяют изучить плотность метеорных потоков и распределение метеоров по блеску.

При определении метеорных радиантов наблюдатель тщательно наносит на копию карты звездного неба каждый замеченный метеор и отмечает порядковый номер метеора, момент пролета, звездную величину, длину метеора в градусах, угловую скорость и цвет. Слабые по блеску метеоры наблюдаются при помощи полевых биноклей, трубок АТ-1, бинокуляра ТЗК. Наблюдения по этой программе позволяют изучать распределение малых радиантов на небесной сфере, определять положение и смещение изученных малых радиантов, приводят к открытию новых радиантов.

Наблюдения переменных звезд . Основные инструменты для наблюдения переменных звезд: полевые бинокли, астрономические трубки АТ-1, бинокуляры ТЗК, БМТ-110, кометоискатели, обеспечивающие большое поле зрения. Наблюдения переменных звезд позволяют изучать законы изменения их блеска, уточнять периоды и амплитуды изменения блеска, определять их тип и т.п.

Первоначально наблюдаются переменные звезды — цефеиды, имеющие правильные колебания блеска с достаточно большой амплитудой, и только после этого следует переходить к наблюдениям полу прав ильных и неправильных переменных звезд, звезд с малой амплитудой блеска, а также исследовать звезды, заподозренные в переменности, и патрулировать вспыхивающие звезды.

При помощи фотоаппаратов можно фотографировать звездное небо с целью наблюдений долгопериодических переменных звезд и поисков новых переменных звезд.

Наблюдения солнечных затмений

В программу любительских наблюдений полного солнечного затмения могут войти: визуальная регистрация моментов соприкосновения края диска Луны с краем диска Солнца (четыре контакта); зарисовки вида солнечной короны — ее формы, структуры, размеров, цвета; телескопические наблюдения явлений при покрытии краем лунного диска солнечных пятен и факелов; метеорологические наблюдения — регистрация хода температуры, давления, влажности воздуха, изменения направления и силы ветра; наблюдения поведения животных и птиц; фотографирование частных фаз затмения через телескоп с фокусным расстоянием 60 см и более; фотографирование солнечной короны при помощи фотоаппарата с объективом, имеющим фокусное расстояние 20-30 см; фотографирование так называемых четок Бейли, которые появляются перед вспыхиванием солнечной короны; регистрация изменения яркости неба по мере увеличения фазы затмения при помощи самодельного фотометра.

Наблюдения лунных затмений

Так же как и солнечные, лунные затмения происходят сравнительно редко, и в то же время каждое затмение характеризуется своими особенностями. Наблюдения лунных затмений позволяют уточнять орбиту Луны, дают сведения о верхних слоях земной атмосферы. Программа наблюдений лунного затмения может состоять из следующих элементов: определение яркости затененных частей лунного диска по видимости деталей лунной поверхности при наблюдении в 6-кратный признанный бинокль или телескоп с малым увеличением; визуальные оценки яркости Луны и ее цвета как невооруженным глазом, так и в бинокль (телескоп); наблюдения в телескоп с диаметром объектива не менее 10 см при 90-кратном увеличении на протяжении всего затмения кратеров Геродот, Аристарх, Гримальди, Атлас и Риччиоли, в области которых могут иметь место цветовые и световые явления; регистрация при помощи телескопа моментов покрытия земной тенью некоторых образований на лунной поверхности (список этих объектов приводится в книге «Астрономический календарь. Постоянная часть»); определение при помощи фотометра блеска поверхности Луны при различных фазах затмения.

 

Наблюдения искусственных спутников Земли

При наблюдении искусственных спутников Земли отмечают путь движения спутника на звездной карте и время его прохождения около заметных ярких звезд. Время должно регистрироваться с точностью до 0,2 с по секундомеру. Яркие спутники можно фотографировать.

В основе астрономии лежат наблюдения, производимые с Земли и лишь с 60-х годов нашего века, выполняемые из космоса - с автоматических и других космических станций и даже с Луны. Аппараты сделали возможным получение проб лунного грунта, доставку разных приборов и даже высадку людей на Луну. Но так пока можно исследовать только ближайшие к Земле небесные светила. Играя такую же роль, как опыты в физике и химии, наблюдения в астрономии имеют ряд особенностей.

Первая особенность состоит в том, что астрономические наблюдения в большинстве случаев пассивны по отношению к изучаемым объектам. Мы не можем активно влиять на небесные тела, ставить опыты (за исключением редких случаев), как это делают в физике, биологии, химии. Лишь использование космических аппаратов дало в этом отношении некоторые возможности.

Кроме того, многие небесные явления протекают столь медленно, что наблюдения их требуют громадных сроков; так, например, изменение наклона земной оси к плоскости ее орбиты становится заметным лишь по истечении сотен лет. Поэтому для нас не потеряли своего значения некоторые наблюдения, производившиеся в Вавилоне и в Китае тысячи лет назад они и были, по современным понятиям, очень неточными.

Вторая особенность астрономических наблюдений состоит в следующем. Мы наблюдаем положение небесных тел и их движение с Земли, которая сама находится в движении. Поэтому вид неба для земного наблюдателя зависит не только от того, в каком месте Земли он находится, но и от того, в какое время суток и года он наблюдает. Например, когда у нас зимний день, в Южной Америке летняя ночь, и наоборот. Есть звезды, видимые лишь летом или зимой.

Третья особенность астрономических наблюдений связана с тем, что все светила находятся от нас очень далеко, так далеко, что ни на глаз, ни в телескоп нельзя решить, какое из них ближе, какое дальше. Все они кажутся нам одинаково далекими. Поэтому при наблюдениях обычно выполняют угловые измерения и уже по ним часто делают выводы о линейных расстояниях и размерах тел.

Расстояние между объектами на небе (например, звездами) измеряют углом, образованным лучами, идущими к объектам из точки наблюдения. Такое расстояние называется угловым и выражается в градусах и его долях. При этом считается, что две звезды находятся недалеко друг от друга на небе, если близки друг другу направления, по которым мы их видим (рис. 1, звезды А и В ). Возможно, что третья звезда С, на небе более далекая от Л, в пространстве к А ближе, чем звезда В.

Измерения высоты, углового расстояния объекта от горизонта, выполняют специальными угломерными оптическими инструментами, например теодолитом. Теодолит - это инструмент, основной частью которого служит зрительная труба, вращающаяся около вертикальной и горизонтальной осей (рис. 2). С осями скреплены круги, разделенные на градусы и минуты дуги. По этим кругам отсчитывают направление зрительной трубы. На кораблях и на самолетах угловые измерения выполняют прибором, называемым секстантом (секстаном).

Видимые размеры небесных объектов также можно выразить в угловых единицах. Диаметры Солнца и Луны в угловой мере примерно одинаковы - около 0,5°, а в линейных единицах Солнце больше Луны по диаметру примерно в 400 раз, но оно во столько же раз от Земли дальше. Поэтому их угловые диаметры для нас почти равны.

Ваши наблюдения

Для лучшего усвоения астрономии вы должны как можно раньше приступить к наблюдениям небесных явлений и светил. Указания к наблюдениям невооруженным глазом даны в приложении VI. Нахождение созвездий, ориентировку на местности по Полярной звезде, знакомую вам из курса физической географии, и наблюдение суточного вращения неба удобно выполнять с помощью подвижной карты звездного неба, приложенной к учебнику. Для приближенной оценки угловых расстояний на небе полезно знать, что угловое расстояние между двумя звездами «ковша» Большой Медведицы равно примерно 5°.

Прежде всего, надо ознакомиться с видом звездного неба, найти на нем планеты и убедиться в их перемещении относительно звезд или Солнца в течение 1-2 месяцев. (Об условиях видимости планет и некоторых небесных явлениях говорится в школьном астрономическом календаре на данный год). Наряду с этим надо ознакомиться в телескоп с рельефом Луны, с солнечными пятнами, а затем уже и с другими светилами и явлениями, о которых сказано в приложении VI. Для этого ниже дается представление о телескопе.


Дата добавления: 2021-11-30; просмотров: 52; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!