Конструктивные особенности трансформатора



Раздел №1 -Трансформаторы

 

Однофазные трансформаторы

 

Конструкция и принцип действия трансформатора

 

Трансформатор – это статический электромагнитный аппарат, преобразующий электрическую энергию напряжения переменного тока с одними параметрами в электрическую энергию с другими параметрами (частота, напряжение, фазность, форма напряжения и.т.д.).

 

Принцип действия трансформатора основан на законе электромагнитной индукции. Рассмотрим работу трансформатора по логической цепочке на “холостом" ходу. На рисунке изображена конструкция однофазного трансформатора,

 

Здесь основной магнитный поток (магнитопровод предназначен для направления и концентрации основного магнитного потока);

 потоки рассеяния основного магнитного потока в обмотках первичной и вторичной цепей. Они зависят от сцепления обмоток

(удаленности друг от друга), от расположения их на стержнях, а также от контура прохождения основного потока. Представим принцип действия трансформатора в виде логической цепочки:

1 При подключении трансформатора к первичной цепи переменного тока возникает ток (по закону Ома), обратно пропорциональный входному сопротивлению трансформатора:
       

2  При протекании тока по обмотке трансформатора, намотанной на замкнутый магнитопровод, возникает напряженность магнитного поля (H):

         , где F - магнитодвижущая сила, lср - средняя линия магнитопровода, W1 – число витков в первичной цепи. Магнитопровод трансформатора необходимо выполнять из ферромагнитного материала.

3
Под действием напряженности магнитного поля Н в магнитопроводе (сердечнике) трансформатора возникает основной магнитный поток

 Ф0, прямо пропорциональный сечению магнитопровода (Sмаг). Магнитная индукция Вх является рабочей точкой на основной кривой намагничивания и выбирается на линейном участке, чтобы при намагничивании сердечника постоянным током магнитопровода не было захода ее в область насыщения.

4  При прохождении основного магнитного потока по сердечнику в первичной цепи возникает ЭДС самоиндукции, а во вторичной цепи ЭДС взаимоиндукции, которые определяются по закону магнитодвижущих сил – закону Максвелла – Фарадея:

          

где ЭДС – это изменение потока сцепления во времени.

 

Логическая цепочка работы трансформатора под нагрузкой

При подключении нагрузки во вторичной цепи начинает протекать ток , при этом в сердечнике возникает размагничивающий магнитный поток, противоположный по направлению к основному. Это приводит к уменьшению ЭДС в первичной цепи. В электромагнитной системе нарушается равновесие ( ), что приводит к возрастанию потребляемого тока из сети , т.е. к самобалансированию системы и поток  восстанавливается:

        .

 

Отсюда следует уравнение магнитодвижущих сил (МДС):

          , где - ток цепи намагничивания (ток “холостого” хода).

 

Уравнение ЭДС трансформатора

 

Рассмотрим его для низкочастотного трансформатора, в котором напряжение питания изменяется по синусоидальному закону:        

При анализе работы однофазного трансформатора используют связь действующего значения ЭДС с конструктивными параметрами трансформатора:

 

         

где KФ – коэффициент формы, для низкочастотного трансформатора имеем синусоидальную форму напряжения KФ =1,11, для высокочастотного трансформатора форма напряжения – прямоугольная и KФ =1.

Sмаг.ак = Sмаг. ×Kмаг – активная площадь сердечника. Под активной площадью понимается не геометрическа площадь сечения, чистая площадь магнитного материала. Для борьбы с вихревыми токами сердечник изготавливается в виде пластин или лент с лаковым покрытием. Поэтому коэффициент Kмаг =0,9…0,98 , он учитывает процентное содержание магнитного материала в сечении сердечника.

При работе трансформатора на высокой частоте прямоугольная форма напряжения объясняется использованием магнитомягких материалов, таких как феррит, альсифер, пермаллой, обладающие узкой прямоугольной петлей гистерезиса.  

При неправильном проектировании трансформатора (выборе рабочей точки Вх на участке близком к области насыщения) происходит перегрев сердечника магнитопровода, например при понижении частоты напряжения питания или повышении уровня напряжения питания.

 

Конструктивные особенности трансформатора

 

Однофазные трансформаторы классифицируются по типу магнитопровода на броневые, стрежневые и тороидальные.

Броневые сердечники используются при мощности менее 150В×А и частота до 8 кГц, стрежневые при мощности от 150 до 800 [В×А] и частоте до 8 кГц, тороидальные – при мощности 250 [В×А], частоте свыше 8 кГц.

В броневом сердечнике трансформатора основной магнитный поток раздваивается, что приводит к увеличению потока рассеяния. Расположение обмоток на одном (среднем) стержне трансформатора улучшает их сцепление и защищает обмотки от механических воздействий и электромагнитных помех. Такая конструкция обладает наибольшим рассеиванием основного потока ( ), поэтому используется при малых мощностях.

В стержневом сердечнике трансформатора для улучшения сцепления обмоток первичную и вторичную обмотки разводят по двум стержням и при намотке чередуют послойно. В такой конструкции поток рассеяния меньше, чем в броневом.

Тороидальная конструкция сердечника трансформатора обладает наименьшим потоком рассеяния, благодаря круговому движения силовой линии основного магнитного потока Ф0 и хорошему сцеплению обмоток (из- за намотки по всему тороиду). Ограничение по мощности связано с плохим охлаждением обмоток и технологическими трудностями изготовления тороида. Поперечное сечение тороида и стержней приближается к округлой форме, что позволяет экономить материал сердечника.

Сердечники магнитопроводов изготавливаются в виде лент, пластин или прессуют из ферромагнитного порошка с добавлением кремния (небольшой процент, так как он придает хрупкость конструкции) для ограничения вихревых токов, перпендикулярных основному потоку. Низкочастотные трансформаторы выполняются из холоднокатанной (анизотропной, изотропной) стали, а также горячекатанной стали.

 

 

Холоднокатанная сталь обладает высокой магнитной проницаемостью и малыми удельными потерями на единицу веса, но является дорогостоящим металлом.В анизотропной холоднокатанной стали направление проката диктует направление силовой линии магнитного потока ( ) потому, что в перпендикулярном направлении ухудшаются магнитные свойства материала. Горячекатанная сталь более экономичная, но имеет более высокие удельные потери и более низкую магнитную проницаемость (mд). В высокочастотных трансформаторах в качестве материала сердечника используют следующее: феррит, пермаллой, альсифер. Альсифер используется для дросселей сглаживающих фильтров, т.к. имеется запас по намагниченности, пермаллой подвержен механическим воздействиям. Феррит обладает широким диапазоном рабочих частот, поэтому широко используется в импульсных трансформаторах.

Обмотки трансформатора изолируются друг от друга. В конструкции трансформатора они размещаются на каркасе и используется межвитковая, межслойная изоляция (лак, волокно, х/б нитки и.т.д.). Тип изоляции зависит от рабочей температуры. Провода для обмоток имеют прямоугольное или круглое сечение, прямоугольные используются при повышенных токах нагрузки. При проектировании трансформаторов вводиться понятие плотности тока.

    Выбор плотности тока зависят от расположения обмотки на магнитопроводе и типа магнитопровода.


Дата добавления: 2018-02-15; просмотров: 345;