ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ



Для исследования функционального состояния аппарата внешнего дыхания как в клинической практике, так и в физиологических лабораториях широко используют определение легочных объемов.

Различают четыре положения грудной клетки, которым соответствуют четыре основных объема легких: дыхательный, резервный объем вдоха, резервный объем выдоха и остаточный объем.

Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 3ˑ10-4 — 7ˑ10-4 м3 (300 — 700 мл). Дыхательный объем обеспечивает поддержание определенного уровня парциального давления кислорода и углекислого газа в альвеолярном воздухе, способствуя тем самым нормальному напряжению газов в артериальной крови.

Резервный объем вдоха — количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1,5ˑ10-3—2ˑ10-3 м3 (1500—2000 мл). Резервный объем вдоха определяет способность легких к добавочному расширению, необходимость в котором имеется при увеличении потребности организма в газообмене.

Резервный объем выдоха — тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Он составляет 1,5ˑ10-3—2ˑ10-3 м3 (1500—2000 мл). Резервный объем выдоха определяет степень постоянного растяжения легких.

Остаточный объем — это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1ˑ10-3—1,5ˑ10-3 м3 (1000—1500 мл) воздуха.

Дыхательный объем, резервные объемы вдоха и выдоха составляют так называемую жизненную емкость легких.

Жизненная емкость легких (показатель внешнего дыхания) — самое глубокое дыхание, на которое способен данный человек. Она определяется тем количеством воздуха, которое может быть удалено из легких, если после максимального вдоха сделать максимальный выдох.

Жизненная емкость легких у мужчин молодого возраста составляет 3,5ˑ10-3—4,8ˑ10-3 м3 (3,5—4,8 л),   у женщин —3ˑ10-3—3,5ˑ10-3 м3 (3—3,5 л). Показатели жизненной емкости легких изменчивы. Они зависят от пола, возраста, роста, массы, положения тела, состояния дыхательных мыщц, уровня возбудимости дыхательного центра и других факторов.

Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.

Коллапсный воздух — это минимальное количество воздуха, которое остается в легких после двустороннего открытого пневмоторакса. Наличие коллапсного воздуха в легких доказывается простым опытом. Установлено, что кусочек ткани легкого после пневмоторакса плавает в воде, а легкое мертворожденного (недышавшего) плода тонет.

Частота и глубина дыхания может оказать значительное влияние на циркуляцию воздуха в легких во время дыхания или на легочную вентиляцию.

Легочная вентиляция — количество воздуха, обмениваемое в 1 мин. За счет легочной вентиляции обновляется альвеолярный воздух и в нем поддерживается парциальное давление кислорода и углекислого газа на таком уровне, который обеспечивает нормальный газообмен. Легочную вентиляцию определяют путем умножения дыхательного объема на число дыханий в 1 мин (минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6ˑ10-3—8ˑ10-3 м3 (6—8 л) в 1 мин. Определение минутного объема дыхания имеет диагностическое значение.

Легочные объемы могут быть определены с помощью специальных приборов — спирометра и спирографа. Спирографический метод позволяет графически регистрировать величины легочных объемов.

ТРАНСПОРТ ГАЗОВ КРОВЬЮ

Мы рассмотрели только одну сторону дыхательного процесса — внешнее дыхание, т. е. обмен газов между организмом и окружающей его средой.

Местом же потребления кислорода и образования углекислого газа являются все клетки организма, где осуществляется тканевое или внутреннее дыхание. Вследствие этого, когда речь идет о дыхании в целом, необходимо учитывать пути и условия переноса газов: кислорода — от легких к тканям, углекислого газа — от тканей к легким. Посредником между клетками и внешней средой является кровь. Она доставляет тканям кислород и уносит углекислый газ.

Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциального давления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением. Это происходит до тех пор, пока не установится динамическое равновесие.

Проследим путь кислорода из окружающей среды в альвеолярный воздух, затем в капилляры малого и большого круга кровообращения и к клеткам организма.

Парциальное давление кислорода в атмосферном воздухе 21,1 кПа (158 мм рт. ст.), в альвеолярном воздухе — 14,4—14,7 кПа (108—110 мм рт. ст.) и в венозной крови, притекающей к легким,—5,33 кПа (40 мм рт. ст.). В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 13,6—13,9 кПа (102—104 мм рт. ст.), в межтканевой жидкости — 5,33 кПа (40 мм рт. ст.), в тканях — 2,67 кПа (20 мм рт. ст.) и меньше в зависимости от функциональной активности клеток. Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.

Движение углекислого газа происходит в противоположном направлении. Напряжение углекислого газа в тканях, в местах его образования — 8,0 кПа и более (60 и более мм рт. ст.), в венозной крови — 6,13 кПа (46 мм рт. ст.), в альвеолярном воздухе — 0,04 кПа (0,3 мм рт. ст.). Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду. Схема диффузии газов через стенку альвеол представлена на рис. 3. Однако одними физическими закономерностями объяснить движение газов нельзя. В живом организме равенства парциального давления кислорода и углекислого газа на этапах их движения никогда не наступает. В легких постоянно происходит обмен газов вследствие дыхательных движений грудной клетки, в тканях же разность напряжения газов поддерживается непрерывным процессом окисления.

Рис. 3. Схема диффузии газов через мембрану альвеолы

Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Из 19 об% кислорода, извлекаемого из артериальной крови, только 0,3 об% находится в растворенном состоянии в плазме, остальная же часть кислорода химически связана с гемоглобином эритроцитов.

Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение — оксигемоглобин: 1 г гемоглобина связывает 1,34 мл кислорода. Содержание гемоглобина в крови составляет в среднем 140 г/л (14 г%). 100 мл крови может связать 14х1,34 = 18,76 мл кислорода (или 19 об%), что составляет в основном так называемую кислородную ёмкость крови. Следовательно, кислородная емкость крови представляет собой максимальное количество кислорода, которое может быть связано 100 мл крови.

Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания или диссоциации оксигемоглобина.

При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких значениях парциального давления кислорода скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45—80%) связывается с кислородом при его напряжении 3,47—6,13 кПа (26—46 мм рт. ст.). Дальнейшее повышение напряжения кислорода приводит к снижению скорости образования оксигемоглобина.

Сродство гемоглобина к кислороду значительно понижается при сдвиге реакции крови в кислую сторону, что наблюдается в тканях и клетках организма вследствие образования углекислого газа. Это свойство гемоглобина имеет важное значение для организма. В капиллярах тканей, где концентрация углекислого газа в крови увеличена, способность гемоглобина удерживать Кислород уменьшается, что облегчает его отдачу клеткам. В альвеолах легких, где часть углекислого газа переходит в альвеолярный воздух, способность гемоглобина связывать кислород вновь возрастает.

Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37—38° С в восстановленную форму переходит наибольшее количество оксигемоглобина.

Таким образом, транспорт кислорода обеспечивается, в основном, за счет химической связи его с гемоглобином эритроцитов. Насыщение гемоглобина кислородом зависит в первую очередь от парциального давления газа в атмосферном и альвеолярном воздухе. Одной из основных причин, способствующих отдаче кислорода гемоглобином, является сдвиг активной реакции среды в тканях в кислую сторону.

Транспорт углекислого газа кровью. Растворимость углекислого газа в крови выше, чем растворимость кислорода. Однако только 2,5—3 об% углекислого газа из общего его количества (55—58 об%) находится в растворенном состоянии. Большая часть углекислого газа содержится в крови и в эритроцитах в виде солей угольной кислоты (48—51 об%), около 4—5 об% — в соединении с гемоглобином в виде карбгемоглобина, около 2/з всех соединений углекислого газа находится в плазме и около 1/з в эритроцитах.

Угольная кислота образуется в эритроцитах из углекислого газа и воды. И.М. Сеченов впервые высказал мысль о том, что в эритроцитах должен содержаться какой-то фактор типа катализатора, который ускоряет процесс синтеза угольной кислоты. Однако лишь в 1935 г. предположение, высказанное И.М. Сеченовым, было подтверждено. В настоящее время установлено, что в эритроцитах содержится угольная ангидраза (карбоангидраза) — биологический катализатор, фермент, который значительно (в 300 раз) ускоряет расщепление угольной кислоты в капиллярах легких. В тканевых же капиллярах при участии карбоангидразы происходит синтез угольной кислоты в эритроцитах. Активность карбоангидразы в эритроцитах настолько велика, что синтез угольной кислоты ускоряется в десятки тысяч раз.

Угольная кислота отнимает основания от восстановленного гемоглобина, в результате чего образуются соли угольной кислоты — бикарбонаты натрия в плазме и бикарбонаты калия в эритроцитах. Кроме того, гемоглобин образует химическое соединение с углекислым газом — карбгемоглобин. Впервые это соединение обнаружено И.М. Сеченовым. Роль карбгемоглобина в транспорте углекислого газа достаточно велика. Около 25—30% углекислого газа, поглощаемого кровью в капиллярах большого круга кровообращения, транспортируется в виде карбгемоглобина. В легких гемоглобин присоединяет кислород и переходит в оксигемоголбин. Гемоглобин вступает в реакцию с бикарбонатами и вытесняет из них угольную кислоту. Свободная угольная кислота расщепляется карбоангидразой на углекислый газ и воду. Углекислый газ диффундирует через мембрану легочных капилляров и переходит в альвеолярный воздух. Уменьшение напряжения углекислого газа в капиллярах легких способствует расщеплению карбгемоглобина с освобождением углекислого газа.

Таким образом, углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбгемоглобин). Важная роль в сложнейших механизмах транспорта углекислого газа принадлежит карбоангидразе эритроцитов.

Конечной целью дыхания является снабжение всех клеток кислородом и удаление из организма углекислого газа. Для осуществления этой цели дыхания необходим ряд условий:

1) нормальная деятельность аппарата внешнего дыхания и достаточная вентиляция легких;

2) нормальный транспорт газов кровью;

3) обеспечение системой кровообращения достаточного кровотока;

4) способность тканей «забирать» из протекающей крови кислород, утилизировать его и отдавать в кровь углекислый газ.

Таким образом, тканевое дыхание обеспечивается функциональными взаимосвязями между системами дыхания, крови и кровообращения.

ДЫХАТЕЛЬНЫЙ ЦЕНТР

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма (покой, работа различной интенсивности, эмоциональные проявления и т. д.) регулируются дыхательным центром, расположенным в продолговатом мозге. Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды.

Решающее значение в определении локализации дыхательного центра и его активности имели исследования отечественного физиолога Н.А. Миславского, который в 1885 г. показал, что дыхательный центр у млекопитающих находится в продолговатом мезге, на дне IV желудочка в ретикулярной формации. Дыхательный центр — парное, симметрично расположенное образование, в состав которого входят вдыхательная и выдыхательная части.

Результаты исследований Н.А. Миславского легли в основу современных представлений о локализации, строении и функции дыхательного центра. Они подтверждены в экспериментах с использованием микроэлектродной техники и отведения биопотенциалов от различных структур продолговатого мозга. Было показано, что в дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. Обнаружены некоторые особенности в работе дыхательного центра. При спокойном дыхании активна только небольшая часть дыхательных нейронов, и, следовательно, в дыхательном центре есть резерв нейронов, который используется при повышенной потребности организма в кислороде. Установлено, что между инспираторными и экспираторными нейронами дыхательного центра существуют функциональные взаимосвязи. Они выражаются в том, что при возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот. Таким образом, одной из причин ритмичной, автоматической деятельности дыхательного центра являются взаимосвязанные функциональные отношения между этими группами нейронов. Существуют и другие представления о локализации и организации дыхательного центра, которые поддерживаются рядом советских и зарубежных физиологов. Предполагают, что в продолговатом мозге локализованы центры вдоха, выдоха и судорожного дыхания. В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.


Дата добавления: 2018-02-18; просмотров: 675; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!