По частоте и форме переменного напряжения



Равносеное состояние - Если к р-n полупроводнику не приложено внешнее напряжение (которое создает поле в объеме полупроводника), то имеет место равновесное состояние p-n-перехода. При отсутствии внешнего напряжения движение электрических зарядов через p-n переход носит характер диффузии основных носителей заряда из одной области проводимости в дру­гую где они становятся неосновными носителями и через определенное время рекомбинируют с основными носителями. В результате диффузии и рекомбинации носителей заряда нарушается электрическая нейтральность примыкающих к металлургическому контакту частей монокристалла полупро­водника. Рис. 4.5 Равновесное состояние p-n перехода В р-области вблизи металлургического контакта после диффузии из нее дырок остаются неподвижные отрицательно заряженные ионы акцепторов, а в n-области — неподвижные положительно заряженные ионы доноров. Образуется область пространственного заряда, состоящая из двух разноименно за­ряженных слоев ионов примеси решетки. Эти заряды создают в области р-n перехода электрическое поле, направленное от n-области к р-области. Это поле, обозначаемое как Едифф или Езап (диффузионное или запирающее), направлено таким образом, что препятствует дальнейшей диффузии основных носителей заряда. Между п и р областями при этом существует разность потенциалов, назы­ваемая контактной разностью потенциалов (Uконт), или говорят, что в области p-n перехода образуется потенциальный барьер (Df), а p-n переход называют запирающим слоем. При этом потенциал n-области положителен по отношению к потенциалу р-области, Пример: Dx – ширина запирающего слоя (0,1 – 1 мкм), UKGe= 0,36В; UKSi= 0,8В. Диффузия электронов и дырок создает диффузионный ток через р-n переход, и приводит к образованию потенциального барьера. Потенциальный барьер вызывает дрейф неосновных носителей заряда (дырок из n-области в р-область и электронов, соответст­венно, из р-области в n-область), т.е. через р-n переход беспрепятственно проходят неосновные но­сители заряда, для которых поле p-n перехода является ускоряющим. В результате дрейфа неосновных носителей заряда возникает дрейфовый ток, встречный по направлению диффузионному току. !!! При отсутствии внешнего электрического поля результирующий ток через p-n переход в равновесном состоянии отсутствует. Iдифф n – Iдр n + Iдифф p - Iдр p = 0 Поэтому Iдифф = Iдр

При прямом включении pp-nn-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному электрическому полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход приводит к повышению концентрации дырок в области nn-типа и электронов в области pp-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым током.

При включении pp-nn-перехода в обратномнаправлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в pp-nn-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению ISIS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

4. Туннельныйпробой возникает при малой ширине p-n-перехода (например, при низкоомной базе), когда при большом обратном напряжении электроны проникают за барьер без преодоления самого барьера. В результате туннельного пробоя ток через переход резко возрастает и обратная ветвь ВАХ идет перпендикулярно оси напряжений вниз.

Лавинныйпробой возникает в том случае, если при движении до очередного соударения с нейтральным атомом кристалла электрон или дырка приобретают энергию, достаточную для ионизации этого атома, при этом рождаются новые пары электрон-дырка, происходит лавинообразное размножение носителей зарядов; здесь основную роль играют неосновные носители, они приобретают большую скорость. Лавинный пробой имеет место в переходах с большими удельными сопротивлениями базы («высокоомная база»), т.е. в p-n-переходе с широким переходом.

Тепловойпробой характеризуется сильным увеличением тока в области p-n-перехода в результате недостаточного теплоотвода.

Если туннельный и лавинный пробои, называемые электрическими, обратимы, то после теплового пробоя свойства перехода меняются вплоть до разрушения перехода.

Напряжения и токи в p-n-переходах зависят от параметров перехода и его температуры

5.Общая емкость p-n-перехода измеряется между выводами кристалла при заданных постоянном напряжении (смещении) и частоте гармонического напряжения, прикладываемых к переходу. Она складывается из барьерной, диффузионной емкостей и емкости корпуса кристалла:

С = Сбар + Сдиф + Скорп

Барьерная (или зарядная) емкость обусловлена нескомпенсированным зарядом ионизированных атомов примеси, сосредоточенными по обе стороны от границы перехода. Эти объемные заряды неподвижны и не участвуют в процессе протекания тока. Они и создают электрическое поле перехода.

При увеличении обратного напряжения область пространственного заряда и сам заряд увеличиваются, причем это увеличение происходит непропорционально.

Барьерная емкость определяется как

,

и равна

,

где Sпер – площадь перехода.

Барьерная емкость составляет десятки - сотни пикофарад.

Диффузионная емкость обусловлена изменением величины объемного заряда, вызванного изменением прямого напряжения и инжекцией неосновных носителей в рассматриваемый слой. В результате в n-базе возникает объемный заряд дырок, который практически мгновенно (за несколько наносекунд) компенсируется зарядом собственных подошедших к дыркам электронов. Диффузионную емкость часто выражают как линейную функцию тока, учитывая экспоненциальный характер ВАХ. При этом

,

где - время жизни носителей для толстой базы или среднее время пролета для тонкой базы.

Рис. 1.6

Диффузионная емкость составляет сотни – тысячи пикофарад.

При прямом напряжении на переходе общая емкость определяется в основном диффузионной емкостью, а при обратном напряжении – барьерной. Общий вид зависимости емкости перехода от напряжения на нем показан на рис. 1.6. Эту зависимость называют вольт – фарадной характеристикой перехода.

6. Полупроводниковый диод — это полупроводниковый прибор с одним выпрямляющим электрическим переходом и двумя выводами, в котором используется то или иное свойство электрического перехода. К противоположным областям выпрямляющего электрического перехода привариваются или припаиваются металлические выводы, и вся система заключается в металлический, металлокерамический, стеклянный или пластмассовый корпус. Область полупроводникового кристалла диода, имеющая более высокую концентрацию примесей (следовательно, и основных носителей заряда), называется эмиттером, а другая, с меньшей концентрацией, — базой. По аналогии с электровакуумными диодами, ту сторону диода, к которой при прямом включении подключается отрицательный полюс источника питания, часто называют катодом, а другую — анодом.

В зависимости от области применения полупроводниковые диоды делят на следующие основные группы:

выпрямительные,

универсальные,

импульсные,

сверхвысокочастотные,

стабилитроны,

варикапы,

туннельные,

обращенные,

фотодиоды,

светоизлучающие диоды,

генераторы шума,

магнитодиоды.

По материалу проводимости

По материалу проводимости диоды можно разделить на вакуумные (ламповые) и полупроводниковые.

Хотя вакуум, как таковой, не совсем корректно называть материалом, тем не менее, это среда, в которой происходит движение электронов, а значит, вакуум обладает проводимостью, и его можно рассматривать как вполне материальный объект, обладающий конкретными электрическими свойствами.

По конфигурации p-n перехода

В зависимости от того, какое исполнение имеет p-n переход полупроводникового диода, их можно разделить на точечные и плоскостные. По технологии изготовления p-n перехода их можно разделить на сплавные,диффузионные и эпитаксиальные.

По назначению

Если рассматривать функции, выполняемые диодами в различных узлах электронных и электрических схем, можно разделить их по назначению на две больших группы: Выпрямительные и специальные.

По частоте и форме переменного напряжения

Все диоды имеют предельную частоту, при которой они могут работать без отклонения их электротехнических характеристик за допустимые пределы. Ряд предельных рабочих частот различных диодов очень обширный, поэтому частотная классификация условна:

 

В зависимости от частоты и формы переменного напряжения:

- Низкочастотные диоды;

- Высокочастотные диоды;

- Импульсные диоды.

Специальные типы

Вольтамперная характеристика диода на различных участках имеет свои особенности. Некоторые электротехнические параметры диода на отдельных участках его ВАХ так же имеют уникальные свойства, на которых основана работа того или иного типа диода. На основе этих особенностей существует классификацияспециальных типов:

- Диоды Шоттки;

- СВЧ-диоды;

- Стабилитроны;


Дата добавления: 2018-02-18; просмотров: 639; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!