Ползучесть бетона. Ее влияние на напряжение в бетоне и арматуре. Влияние ползучести на предварительное напряжение растянутой арматуры.



Пластические свойства бетона вызывают такое явление, как ползучесть: свойство материала деформироваться при постоянной нагрузке.

Ползучесть разделяют на линейную, при которой зависимость между напряжениями и деформациями приблизительно линейная, и нелинейную, которая начинается при напряжениях, превышающих границу образования структурных микротрещин. Такое разделение ползучести условно, так как в некоторых опытах наблюдается нелинейная зависимость напряжения и деформаций даже при относительно малых напряжениях Учет нелинейной ползучести имеет существенное значение в практических расчетах предварительно напряженных изгибаемых, внецентренно сжатых и некоторых других элементов. Опыты с бетонными призмами показывают, что независимо от того, с какой скоростью загружения было получено напряжение, конечные деформации ползучести, соответствующие этому напряжению, будут одинаковыми. С ростом напряжений ползучесть бетона увеличивается. Загруженный в раннем возрасте бетон обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Технологические факторы также влияют на ползучесть бетона: с увеличением W/C и количества цемента на единицу объема бетонной смеси ползучесть возрастает; с повышением прочности зерен заполнителей, повышением прочности бетона, его класса она уменьшается.

Чем выше sb или чем ниже прочность бетона, тем больше деформации ползучести eп (рис. 4). Наиболее интенсивно eп проявляется в первое время после приложения нагрузки, затем они постепенно затухают в течение нескольких лет.

При вибрационных нагрузках с большим числом повторений в минуту (200-600) наблюдается ускоренное развитие ползучести бетона, называемое виброползучестью или динамической ползучестью.

Влияние ползучести на предварительное напряжение растянутой арматуры Рассмотрим схему на рис. 6. После приложения нагрузки N бетон и арматура укоротились на величину, соответствующую относительной деформации eb (благодаря сцеплению, они работают совместно). В бетоне установилось сжимающее усилие Nb1, а в арматуре Nsc1. Затем, вследствие ползучести, деформации выросли на величину eп. Поскольку арматура работает практически упруго, сжимающие напряжения в ней с течением времени возрастают по закону Гука на величину Dssc= eпЕs, а усилие – на величину DNsc = DsscAs (где Аs – площадь сечения арматуры), т.е. Nsc2 = =Nsc1 + DNsc. Но если Nsc растет, а внешняя сила N постоянна, то, значит, усилие и напряжения в бетоне падают: N = Nb1 + Nsc1 = Nb2 + Nsc2. Происходит перераспределение напряжений: бетон частично разгружается, а арматура дополнительно нагружается. При наличии в сжатом бетоне преднапряженной (предварительно натянутой) арматуры растягивающие напряжения в ней падают, “теряются” – отсюда и термин “потери напряжений” (От момента натяжения арматуры до начала приложения внешней нагрузки на конструкцию часть величины предварительного напряжения ssp безвозвратно теряется).

 


Мягкая и твердая арматурная сталь. Текучесть стали. Условный предел текучести. Принципиальные отличия горячекатаной арматуры от высокопрочной.

“Мягкая” арматура (классы А-I, A-II, A-III) на диаграмме растяжения (рис. 9,а) имеет три главных участка: упругие деформации (здесь действует закон Гука), площадку текучести при напряжениях spl (предел текучести) и упруго-пластические деформации (криволинейный участок). При проектировании конструкций используют первый и второй участки. Текучесть стали в той или иной степени учитывают в расчетах нормальных сечений на изгиб (при слабом армировании, при многорядном расположении арматуры и т.д.), в расчетах статически неопределимых конструкций по методу предельного равновесия и в других случаях. Третий участок в расчетах не участвует – деформации там столь велики, что в реальных условиях они соответствуют уже разрушению конструкций.

Повышением прочности горячекатаной арматурной стали и уменьшение удлинения при разрыве достигают введением в ее состав углерода и различных легирующих добавок: марганца, кремния, хрома и др. Существенного повышения прочности горячекатаной арматурной стали достигают термически упрочнением или холодным деформированием. При термическом упрочнении осуществляется закаливание арматурной стали (нагревом до 800 – 900С и быстрым охлаждением), затем частичный отпуск(нагревом до 300-400С и постепенным охлаждением).

Высоколегированные и термически упрочненные арматурные стали переходят в пластическую стадию постепенно, что характеризуется отсутствием ярко выраженной площадки текучести на кривой. Для этих сталей устанавливают условный предел текучести – напряжение σ0,2, при котором остаточные деформации составляют 0,2%.

Сущность упрочнения арматурной стали холодным деформированием состоит в следующем. При искусственной вытяжке в холодном состоянии до напряжения (σk> σy), превышающего предел текучести, под влиянием структурных изменений кристаллической решетки арматурная сталь упрочняется. При повторной вытяжке, поскольку пластические деформации уже выбраны, напряжение σk становится новым, искусственно поднятым пределом текучести.

“Твердая”, или высокопрочная арматура (классы А-IV, Ат-IV и выше, B-II, Bp-II, K-7, K-19) не имеет физического предела текучести (рис. 9,б), она деформируется упруго до предела пропорциональности, а далее диаграмма постепенно искривляется. В качестве границы безопасной работы принят условный предел текучести s02, при котором остаточные, т.е. пластические удлинения составляют 0,2 %. У “твердых” сталей прочность выше, чем у “мягких”, но зато меньше удлинения при разрыве d, т.е. у них хуже пластические свойства, они более хрупкие.

Напряжение, при котором деформации развиваются без заметного увеличения нагрузки, называется физическим пределом текучести.

При малых удлинениях может произойти хрупкое (внезапное) обрушение железобетонной конструкции, даже при небольших перегрузках: арматура разорвется, когда прогибы малы, а раскрытие трещин незначительно – другими словами, когда конструкция не подает сигналов, предупреждающих о своем опасном состоянии. Поэтому арматура любого класса должна иметь величину равномерного относительного удлинения при разрыве d, как правило, не менее 2 %.

Сталь высокопрочной арматуры более хрупкая, относительное удлинение при разрыве равно 4,5%, сталь стержневой горячекатанной арматуры более пластичная, относительное удлинение при разрыве ее равно 18%.

 


Дата добавления: 2018-02-18; просмотров: 623; ЗАКАЗАТЬ РАБОТУ