Анализ опасности прикосновения к токоведущим частям электроустановок (далее – ЭУ). Схемы прикосновения человека к однофазной и двухфазной сети.
2.1. Классификация причин и условий поражения человека электрическим током.
Основными причинами возникновения условий поражения электрическим током являются:
ü случайное прикосновение или приближение на недопустимое расстояние к токоведущим частям электроустановки;
ü возникновение аварийных режимов в электроустановках,
ü невыполнение требований правил устройства электроустановок (ПУЭ), правил техники безопасности и технической эксплуатации электроустановок (ПТБ и ПТЭ).
Анализ опасности поражения человека в электроустановках сводится к определению значения тока в цепи тела человека. Однако, эта задача не легкая, поскольку человек может иметь контакт с различными элементами электроустановки, напряжение между которыми зависит от ее параметров, условий и режима работы.
Существует несколько условий поражения (схем включения) человека в электроустановках.
Основные из них:
- двухполюсное (двухфазное) прикосновение (одновременное прикосновение) к двум полюсам (фазам) электроустановки, находящейся под напряжением;
- однополюсное (однофазное) прикосновение, т.е. прикосновение человека, имеющего гальваническую связь с землей, к одному полюсу (фазе) электроустановки, находящейся под напряжением;
- прикосновение к проводящим частям электроустановки, оказавшимися под напряжением в результате повреждения изоляции (прикосновение к аварийному корпусу);
|
|
- включение под напряжение шага, т.е. между двумя точками цепи тока, находящимися друг от друга на расстоянии шага, на которых одновременно стоит человек.
При рассмотрении условий возникновения электрической цепи через тело человека различают прямой контакт человека с токоведущими частями находящимися под напряжением и косвенный. Прямой контакт возникает, как правило, в результате нарушения требований Правил техники безопасности при эксплуатации электроустановок, а косвенный – при пробое изоляции на корпус электрооборудования.
Согласно ПУЭ:
Прямое прикосновение - электрический контакт людей с токоведущими частями, находящимися под напряжением.
Косвенное прикосновение– электрический контакт людей с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.
Токоведущая часть– проводящая часть, электроустановки, находящаяся в процессе ее работы под рабочим напряжением (в том числе нулевой рабочий проводник).
Проводящая часть – часть, которая может проводить электрический ток.
При оценке условий электробезопасности в какой-то конкретной электроустановке необходимо провести анализ возникновения электрической цепи через тело человека, сравнение его с допустимыми нормами значением и принятие заключения о необходимости выполнения мероприятий по обеспечению электробезопасности.
|
|
2.2. Анализ условий поражения в электроустановках
Наиболее характерные варианты (схемы включения) попадания человека под напряжение в сетях переменного и постоянного тока представлены в таблице 2.1, в которой приняты следующие обозначения:
- Uс – напряжение сети постоянного или однофазной сети переменного тока;
- Uл –линейное напряжение;
- Uпр – напряжение прикосновения;
- Uш – шаговое напряжение;
- Ih – ток через человека;
- Iз – ток замыкания на землю;
- Rh – сопротивление тела человека;
- R0 – сопротивление заземляющего устройства;
- Rиз – сопротивление изоляции относительно земли.
По ПУЭ:
Глухозаземленнаянейтраль– нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в 2-х проводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.
Изолированная нейтраль– нейтраль трансформатора или генератора, неприсоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных устройств.
|
|
Заземлитель – проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
Заземляющий проводник – проводник, соединяющий заземляемую часть (точку) с заземлителем.
Заземляющее устройство – совокупность заземлителя и заземляющих проводников.
Наиболее типичными являются два случая замыкания цепи тока через тело человека: когда человек касается одновременно 2х проводов и когда он касается лишь одного провода.
Двухфазное прикосновение
Двухфазное (двухполюсное) прикосновение (рис. 2.1) более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение. Ток через человека рассчитывается по формуле:
(2.1)
Для 3х фазной сети переменного тока человек попадает под линейное напряжение (Uл)
(2.2)
где: | Uл | - линейное напряжение, В |
Uф | - фазное напряжение, В. |
Для сети с Uл=380 В (Uф=220 В) при сопротивлении тела человека Rh равному 1000 Ом ток через тело человека:
|
|
Этот ток для тела человека является смертельно опасным.
Для сети постоянного тока 220 В ток через тело человека будет равен:
Этот ток является неотпускающим и человек не может освободиться от него без посторонней помощи.
При 2х фазном прикосновении ток, проходящий через тело человека практически не зависит от режима нейтрали сети, следовательно, двухфазное прикосновение является одинаково опасным, как в сети с изолированной, так и в сети с заземленной нейтралями (при одинаковых линейных напряжениях).
Очевидно, что при двухфазном прикосновении опасность не уменьшается и в том случае, если человек надёжно изолирован от земли.
Однофазное прикосновение
Однофазное (однополюсное) прикосновение (рис. 2.2 и 2.3) происходит во много раз чаще, чем двухфазное прикосновение, но является менее опасным, поскольку напряжение, под которым оказывается человек не превышает фазного напряжения сети и ток через тело человека меньше в 1,73 раза. Кроме того, на этот ток большое влияние оказывает режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление земли, сопротивление основания (пола), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.
В сети с заземлённой нейтралью (рис. 2.2), цепь тока, проходящего через человека включает в себя, кроме сопротивления тела человека, ещё и сопротивление его обуви, сопротивление пола, а также сопротивление заземления источника тока. Причём все эти сопротивления включены последовательно.
Ток, проходящий через тело человека в этом случае будет определяться по формуле:
(2.3)
где: | Uф | - фазное напряжение сети, В; |
Rh | - cопротивление тела человека, Ом; | |
Rоб | - сопротивление обуви человека, Ом; | |
Rn | - сопротивление пола (основания), Ом; | |
R0 | - сопротивление заземления нейтрали источника тока, Ом |
Наиболее неблагоприятный случай будет, когда человек, прикоснувшийся к фазному проводу, имеет на ногах токопроводящую обувь (сырую или подбитую металлическими гвоздями) и стоит непосредственно на сырой земле или на токопроводящем (металлическом) полу (или на заземленной металлической конструкции). В этом случае Rоб = и Rn=0.
Ток, проходящий через тело человека будет определяться по формуле:
(2.4)
Обычно сопротивление заземления нейтрали (R0) во много раз меньше сопротивления тела человека (Rh) и не превышает 10 Ом, им можно пренебречь, и тогда ток через тело человека можно определить по формуле:
Так, в сети с фазным напряжением 220 В при Rh=1000 Ом, ток через человека будет:
Этот ток также смертельно опасен для человека.
В случае. когда человек имеет на ногах непроводящую обувь (например, диэлектрические галоши) и стоит на изолирующем основании (например, на деревянном полу), то принимая Rоб= 45000 Ом и Rn=100000 Ом, получим:
Этот ток не опасен для человека.
В действительных условиях диэлектрическая обувь и изолирующие основания обладают значительно большими сопротивлениями, и ток, проходящий человека, будет ещё меньше.
В сети с изолированной нейтралью ток (рис. 2.3), проходящий через человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.
С учётом сопротивления обуви (Rоб) и пола (Rn), на котором стоит человек, включенных последовательно сопротивлению тела человека (Rh), ток, проходящий через человека, определяется по формуле:
(2.5)
где: | Rиз | - cопротивление изоляции одной фазы сети относительно земли, Ом |
При наиболее неблагоприятном случае (Rоб и Rn=0) уравнение упростится и примет вид:
(2.6)
Для случая сети с Uф=220 В при Rиз=90000 Ом и Rh=1000 Ом ток через тело человека будет равен:
Этот ток будет ощутимым, но не смертельным для человека.
На основании вышеизложенного, можно сделать вывод, что в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости от сопротивления изоляции проводов сети относительно земли, (чем лучше изоляция, тем меньше ток, проходящий через тело человека).
Кроме того, в сети с изолированной нейтралью, ток через человека, прикоснувшегося к фазному проводу будет ограничиваться сопротивлением обуви и пола.
При Rоб=45000 Ом и Rn=100000 Ом ток через человека:
Этот ток практически безопасен для человека.
Таким образом, при прочих равных условиях прикосновение человека к одной фазе в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью.
Если человек прикасаться к нетоковедущим частям (к корпусу) электроустановки, то ток через него зависит и от сопротивления изоляции между корпусом и токоведущими частями. В большей степени эта зависимость проявляется при прикосновении к корпусу однофазного электроприемника в сети с глухозаземленнойнейтралью. Схема замещения для этого случая приведена на рис. 2.4, где Rн –сопротивление нагрузки, Rиз – сопротивление изоляции между корпусом и токоведущими частями электроприемника.
Из схемы видно, что Rиз представляет собой дополнительное сопротивление в цепи тела человека, поэтому ток через человека будет определяться выражением:
(2.7)
Сопротивление изоляции в этом случае (при малом R0) должно удовлетворять условию:
Rиз> -Rh (2.8)
где: | Ihq | - пороговый неощутимый ток |
В этом случае человек не будет ощущать воздействие электрического тока при обслуживании электроустановки.
Таким образом, на безопасность электроустановок значительное влияние оказывают сопротивления изоляции токоведущих частей относительно земли и корпусов электроустановок. Эти сопротивления нормируются. В ряде случаев нормируются не сопротивления изоляции, а токи, определяемые ими (токи утечки).
Дата добавления: 2018-02-15; просмотров: 10160; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!