Общие сведения о детонации, особенности



Детонации промышленных ВВ

Согласно гидродинамической теории детонацией считают перемещение по ВВ зоны химического превращения, ведомой ударной волной постоянной амплитуды. Амплитуда и скорость перемещения ударной волны постоянные, так как диссипативные потери, сопровождающие ударное сжатие вещества, компенсируются тепловой реакцией превращения ВВ. В этом одно из главных отличий волны детонации от ударной волны, распространение которой в химически неактивных материалах сопровождается спадом скорости и параметров волны (затухание).

Детонация различных твердых взрывчатых веществ протекает со скоростями от 1500 до 8500 м/с.

Основной характеристикой детонации ВВ является скорость детонации, т.е скорость распространения по ВВ детонационной волны. Благодаря очень быстрой скорости распространения детонационной волны по заряду ВВ изменения его параметров [давления (Р), температуры (Т), объема (V)] во фронте волны происходят скачкообразно, как и в ударной волне.

Схема изменения параметров (Р,Т,V) при детонации твердого ВВ приведена на рисунке 2.1.

Рисунок 2.1- Схема изменения параметров при детонации твердых ВВ

 

Давление (Р) скачкообразно возрастает на фронте ударной волны, а затем в зоне химической реакции начинает постепенно падать. Температура Т так же скачкообразно возрастает. но в меньшей мере, чем Р, а затем по мере химического превращения ВВ несколько возрастает. Объем V, занимаемый ВВ, благодаря высокому давлению уменьшается и остается практически неизменным до конца превращения ВВ в продукты детонации.

Гидродинамическая теория детонации (русский ученый В.А. Михальсон (1890), англ. ученый физик          Д. Чепмен, франц. ученый физик Э.Жуге), основанная на теории ударной волны (Ю.Б.Харитон, Я.Б.Зельдович, Л.Д.Ландау), дает возможность, пользуясь данными о теплоте превращения ВВ и о свойствах продуктов детонации (средняя молекулярная масса, теплоемкость и др.), установить математическую зависимость между скоростью детонации, скоростью движения продуктов взрыва, объемом и температурой продуктов детонации.

Для установления этих зависимостей используют общепринятые уравнения, выражающие законы сохранения вещества, количества движения и энергии при переходе от исходного ВВ к его продуктам детонации, а также так называемое уравнение Жуге и уравнение состояния продуктов детонации, выражающее зависимость между основными характеристиками продуктов взрыва. Согласно уравнению Жуге при установившемся процессе скорость детонации D равна сумме скорости движения продуктов детонации за фронтом w и скорости звука с в продуктах детонации:

 

          D = w +с.                                    (2.1)

Для продуктов детонации «газов», имеющих сравнительно небольшое давление, применяют общеизвестное уравнение состояния идеальных газов:

             PV=RT ,                                    (2.2)

где P – давление,  

V – удельный объем,

R – газовая постоянная,

Т – температура.

Для продуктов детонации конденсированных ВВ Л.Д. Ландау и К.П. Станюковичем было выведено уравнение состояния:

             PV n =const ,                             (2.3)

где P и V  - давление и объем продуктов взрыва в момент их образования;

n = 3 - показатель степени в уравнении состояния для конденсированных ВВ (показатель политропы) при плотности ВВ >1.

Скорость детонации по гидродинамической теории

              ,               (2.4)

где  - теплота взрывчатого превращения.

Однако получаемые по этому выражению значения  всегда завышены, даже с учетом переменного, зависящего от плотности ВВ, значения «n». Тем не менее, для ряда оценок полезно пользоваться подобной зависимостью в общем виде:

               D = ƒ (pо)  ,         (2.5)

 где pо – плотность ВВ.

Для приближенных оценок скорости детонации нового вещества (если нет возможности экспериментального определения ее) можно пользоваться следующим отношением:

                             ,             (2.6)

где индекс «х» относится к неизвестному (новому веществу), а «ЭТ» -  к эталонному с известной скоростью детонации при равных плотностях и предполагаемых близких значениях политропы (n).

Таким образом, скорость детонации зависит от трех основных характеристик ВВ: теплоты его взрыва, плотности и состава продуктов взрыва (через «n» и «М*»).

Превращение ВВ в форме детонации является наиболее желательным, так как оно обеспечивает значительную скорость химического превращения и создает наибольшие давление и плотность продуктов взрыва. Данное положение может быть соблюдено при условии, сформулированном Ю.Б.Харитоном:

                       t < q ,                                   (2.7)

где t - длительность химического превращения ВВ;

q - время разбрасывания исходного ВВ.

Ю.Б.Харитон ввел понятие критического диаметра, величина которого является одной из важнейших характеристик ВВ. Соотношение времени реакции и времени разброса позволяет дать правильное объяснение наличия для каждого ВВ критического или предельного диаметра.

Если принять скорость звука в продуктах взрыва через «с», а диаметр заряда через «d», то время разбрасывания вещества приблизительно можно определить из выражения

                              .                  (2.8)

Учитывая, что условием возможности прохождения детонации q >t, можно записать   >t, откуда критический диаметр, т.е. наименьший диаметр, при котором еще может протекать устойчивая детонация ВВ, будет равняться:

                               dкр =сt.                    (2.9)

Из данного выражения следует, что любой фактор, увеличивающий время разбрасывания вещества, должен способствовать детонации (оболочка, увеличение диаметра). Также будут действовать факторы, ускоряющие процесс химического превращения ВВ в детонационной волне (введение высокоактивных ВВ – мощных и восприимчивых).

Экспериментальные измерения показывают асимптотический характер возрастания скорости детонации с увеличением диаметра заряда. Начиная с предельного диаметра заряда dпр , при дальнейшем его увеличении скорость практически не возрастает (рисунок 2.2).

Рисунок 2.2 - Зависимость скорости детонации D от диаметра заряда dз:

DИ  -идеальная скорость детонации; dкр –критический диаметр; dпр – предельный диаметр.

Критические геометрические характеристики заряда зависят также от плотности ВВ и его однородности. Для индивидуальных ВВ с увеличением плотности уменьшается dкр , вплоть до области, близкой к плотности монокристалла, где, как показал А.Я.Апин, может наблюдаться некоторое увеличение dкр (например для тротила).

Если диаметр заряда ВВ значительно выше критического, то повышение плотности ВВ приводит к увеличению скорости детонации, достигающей предела при максимально возможной плотности ВВ.

Для аммиачно-селитренных ВВ критические диаметры сравнительно велики. В обычно применяемых зарядах влияние плотности имеет двойственный характер –увеличение плотности вначале приводит к повышению скорости детонации (D), а затем при дальнейшем увеличении плотности скорость детонации начинает падать и может наступить затухание детонации. Для каждого аммиачно-селитринного ВВ, в зависимости от условий его применения, существует своя «критическая» плотность. Критической называют ту максимальную плотность, при которой (в данных условиях) еще возможна устойчивая детонация ВВ. При небольшом повышении плотности «заряда» выше критической детонация затухает.

Критическая плотность (pкр) (точки максимума на кривой D=¦ (rо)) не является константой того или иного промышленного ВВ, определяемой его химическим составом. Она меняется с изменением физических характеристик ВВ (размеров частиц, равномерности распределения частиц компонентов в массе вещества), поперечных размеров зарядов, наличием и свойствами оболочки заряда.

Исходя из данных представлений, вторичные ВВ делятся на две большие группы. Для ВВ 1-го типа, к которым относятся в основном мощные мономолекулярные ВВ (тротил, гексоген и др.), критический диаметр стационарной детонации уменьшается с увеличением плотности ВВ. Для ВВ 2-го типа, наоборот, критический диаметр увеличивается при уменьшении пористости (увеличении плотности) ВВ. Представителями этой группы являются, например, аммиачная селитра, перхлорат аммония, и ряд смесевых промышленных ВВ: АСДТ (аммиачная селитра + +диз. топливо); эмульсионные ВВ и др.

Для ВВ 1-го типа скорость детонации D цилиндрического заряда диаметром d монотонно растет при увеличении плотности rо взрывчатого вещества. Для ВВ 2-го типа скорость детонации сначала растет при уменьшении пористости ВВ, достигает максимума, а затем уменьшается, вплоть до прекращения детонации при так называемой критической плотности. Немонотонное поведение зависимости D=¦ (rо) для смесевых (промышленных) ВВ связывается с затруднительной фильтрацией взрывных газов, поглощением энергии детонационной волны инертными добавками, многостадийностью взрывного превращения отдельных компонентов, неполным перемешиванием продуктов взрыва компонентов и рядом других факторов.

Считается, что при уменьшении пористости ВВ скорость детонации сначала растет за счет увеличения удельной энергии взрыва QV , так как D ~ , а затем по указанным выше причинам уменьшается.

Основные характеристики ВВ.

Чувствительность ВВ

С момента появления ВВ установлена их высокая опасность при механических и тепловых воздействиях (удар, трение, вибрация, нагрев). Способность ВВ взрываться при механических воздействиях определяли как чувствительность к механическим воздействиям, а способность ВВ взрываться при тепловом воздействии определяли как чувствительность к тепловым воздействиям (тепловому импульсу). Интенсивность воздействия, или, как говорят, величина минимального начального импульса, необходимого для возбуждения реакции взрывчатого разложения, для различных ВВ может быть различной и зависит от их чувствительности к тому или иному виду импульса.

Для оценки безопасности производства, транспортирования и хранения промышленных ВВ большое значение приобретает их чувствительность к внешним воздействиям.

Существуют различные физические модели возникновения и развития взрыва при локальных внешних воздействиях (ударе, трении). В учении о чувствительности ВВ получили распространение две концепции о причинах возникновения взрыва при механических воздействиях – тепловая и нетепловая. О причинах возникновения взрыва при тепловом воздействии (нагреве) все однозначно и понятно.

Согласно нетепловой теории – к возбуждению взрыва приводит деформация молекул и разрушение внутримолекулярных связей вследствие приложения к веществу некоторых критических давлений всестороннего сжатия или сдвиговых напряжений. В соответствии с тепловой теорией возникновения взрыва энергия механического воздействия диссипирует (рассеивается) в виде тепла, приводящего к разогреву и воспламенению ВВ. В создании представлений о тепловой природе чувствительности ВВ большое влияние оказали идеи и методы теории теплового взрыва, разработанной академиками Н.Н.Семеновым, Ю.Б. Харитоном и Я.Б.Зельдовичем, Д.А.Франк-Каменецким, А.Г.Мержановым.

Поскольку скорость термического разложения ВВ, определяющая возможность протекания реакции по механизму теплового взрыва, является экспоненциальной функцией температуры (закон Аррениуса: k=kоe-Е/RT), то становится понятным, почему не общее количество диссипируемого тепла, а его распределение по объему ВВ должно играть решающую роль в процессах инициирования взрыва. В этой связи представляется закономерным то обстоятельство, что различные пути, по которым механическая энергия превращается в тепло, неравноценны между собой. Эти представления явились отправной точкой для создания локально-тепловой (очаговой) теории инициирования взрыва (Н.А.Холево, К.К.Андреев, Ф.А.Баум и др.).

Согласно очаговой теории возбуждения взрываэнергия механического воздействия диссипирует не равномерно по всему объему ВВ, а локализируется в отдельных участках, являющихся, как правило, физическими и механическими неоднородностями взрывчатого вещества. Температура таких участков («горячих точек») намного превышает температуру окружающего однородного тела (вещества).

Каковы же причины появления очага разогрева при механическом воздействии на ВВ? Можно считать, что внутреннее трение является основным источником разогрева вязкопластичных тел, обладающих однородной физической структурой. Высокотемпературные очаги разогрева в жидких ВВ при ударно-механических воздействиях в основном связаны с адиабатическим сжатием и разогревом газа или паров ВВ в небольших пузырьках, рассеянных по объему жидкого ВВ.

Каков же размер горячих точек? Предельный размер горячих точек, способных привести к взрыву ВВ при механических воздействиях, составляет 10-3 – 10-5 см, необходимое повышение температуры в очагах достигается 400-600 К, а длительность разогрева колеблется от 10-4 до 10-6с.

Л.Г.Болховитинов сделал вывод о наличии минимального размера пузырька, который способен схлопываться адиабатически (без теплообмена с окружающей средой). Для типичных условий механического удара его величина составляет порядка 10-2 см. Кинокадры схлопывания воздушной полости представлены на рисунке 2.3

Рисунок 2.3 - Этапы схлопывания пузырьков при сжатии

Отчего зависит чувствительность ВВ и какие факторы влияют на ее величину?

К числу таких факторов можно отнести физическое состояние, температуру и плотность вещества, а так -же наличие примесей во взрывчатом веществе. С повышением температуры ВВ его чувствительность к удару (трению) возрастает. Однако столь очевидный постулат не всегда однозначен на практике. В качестве доказательства этого всегда приводится пример, когда заряды аммиачной селитры с добавлением мазута (3 %) и песка (5%), в середину которых помещали стальные пластины, взрывались от прострела пулей при обычной температуре, но не взрывались в этих же условиях при предварительном нагреве заряда до 60 0С. С.М.Муратов указывал, что в данном примере не учтен фактор изменения физического состояния заряда при изменении температуры и, что особенно важно, – условия межграничного трения между движущимся предметом и зарядом ВВ. Влияние температуры часто нивелируется другими факторами, связанными с температурой.

Увеличение плотности ВВ обычно снижает чувствительность к удару (трению).

Чувствительность ВВ можно целенаправленно регулировать введением добавок. Для снижения чувствительности ВВ вводят флегматизаторы, для увеличения – сенсибилизаторы.

В практике работ часто можно встретиться с такими сенсибилизирующими добавками – песок, мелкие частицы породы, металлическая стружка, частицы стекла.

Тротил, дающий в чистом виде при испытании на чувствительность к удару 4-12 % взрывов, при введении в него 0,25 % песка дает 29 % взрывов, а при введении 5 % песка – 100 % взрывов. Сенсибилизирующее влияние примесей объясняется тем, что включение твердых веществ в ВВ способствует при ударе концентрации энергии на твердых частицах и их острых гранях и облегчает условия создания локальных «горячих очагов».

Вещества с твердостью, меньшей твердости частиц ВВ, смягчают удар, создают возможность свободного движения частиц ВВ и тем самым снижают вероятность концентрации энергии в отдельных «точках». В качестве флегматизаторов обычно используют легкоплавкие вещества, маслянистые жидкости, обладающие хорошей обволакивающей способностью, высокими теплоемкостями: парафин, церезин, вазелин, различные масла. Флегматизатором ВВ является также вода.

 

 


Дата добавления: 2018-02-15; просмотров: 1250; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!