Технологический режим работы скважин при



наличии подошвенной воды [5,10]

 

Закономерности изменения предельного безводного дебита

 

Общие соображения. Точное решение задачи установления технологического режима эксплуатации газовых скважин, вскрывших пласты с подошвенной водой с учетом нестационарности процесса конусообразования, неоднородности пористой среды в вертикальном и горизонтальном направлениях, различия законов фильтрации газа и воды, изменения их физических свойств в процессе разработки, формы и границ разделов газ-вода, фазовых проницаемостей и капиллярных сил практически невозможно. Как правило, безводные дебиты, определяемые расчетным путем, оказываются значительно больше фактических, и конус подошвенной воды прорывается в скважину при дебитах сравнительно меньших, чем расчетные. Тем не менее, ввиду важности данной задачи при проектировании и эксплуатации газовых месторождений рассмотрим основные закономерности изменения предельного безводного дебита в зависимости от величины вскрытия и анизотропии пласта.

Предельным безводным дебитом будем считать производительность скважины, получаемую при достижении вершины конуса воды забоя скважины. Отсюда следует, что для получения безводного дебита необходимо, чтобы уровень контакта газ-вода под скважиной был ниже нижних перфорационных отверстий. Это означает, в скважине необходимо создать такую депрессию, при которой уровень конусообразования воды будет меньше высоты:

y = а (h-hвс),    (4.1)

где h- толщина пласта; hвс – вскрытая толщина; коэффициент аположим равным 0,4, что по Чарному дает достаточную надежность в определении безводного дебита.

Таким образом, для точного решения задачи о безводном дебите газовой скважины необходимо знание истинного положения границы раздела газ—вода, являющейся функцией времени и режима эксплуатации скважины, и распределения давления в зоне, дренируемой рассматриваемой скважиной, в значительной мере определяемого степенью изотропии пласта.

В большинстве газоносных пластов вертикальные и горизонтальные проницаемости различаются, причем вертикальная проницаемость kв значительно меньше горизонтальной. Низкая вертикальная проницаемость снижает опасность обводнения газовых скважин в процессе эксплуатации. Однако при низкой вертикальной проницаемости затрудняется и подток газа снизу в область влияния несовершенства скважины по степени вскрытия. В связи с этим необходимо учитывать влияние анизотропии, так как использование методов определения Qпр, разработанных для изотропных пластов, приводит к существенным погрешностям.

Чем больше подъём ГВК, тем выше погрешность в величинах дебитов, определённых без учета подъёма ГВК. Величина подъёма контакта зависит от запасов и отбора газа, активности водонапорной системы, коллекторских свойств водо-газоносного пласта и др. Внедрение в процессе разработки подошвенной воды приводит к изменению пластового давления и уменьшению газонасыщенной толщины пласта. При больших упругих запасах воды необходимо учитывать упругоёмкость воды и водоносного пласта.

Закономерности изменения безводного дебита. Зависимость предельного безводного дебита Qпр от относительной толщины вскрытия `h= hвс/h показывает, что существует некоторое вскрытие, при котором предельный, безводный дебит становится максимальным (рис.4.12). При этом для получения максимального дебита степень вскрытия пластов с низкой продуктивностью должна быть больше, чем пластов с высокой продуктивностью, так как с уменьшением проницаемости Qпр тоже уменьшается.

Учет влияния анизотропии пласта показывает, с уменьшением вертикальной проницаемости предельный дебит существенно снижается (рис.4.12). Кроме того, с уменьшением параметра анизотропии пласта n=kв/kг величина вскрытия пласта hвс, при которой Qпр становится максимальным, увеличивается.

На величину безводного дебита влияют снижение р(t) и h(t). Чем меньше р(t) и h(t), тем ниже безводный дебит скважины, хотя в целом вторжение воды в газовую залежь несколько замедляет темп снижения пластового давления (рис. 4.13). На данном рисунке кривые 1-3 соответствуют безводным дебитам при рпл(t) = 25,7; 21,9 и 14,4 МПа, получаемым при подвижном контакте газ-вода. Безводные дебиты при этих же пластовых давлениях, но при неподвижном контакте газ-вода показаны пунктирными кривыми 2-5. Из рис. 4.13 видно, что при подвижном контакте газ-вода Qпрснижается более интенсивно, чем при неподвижном газо-водяном контакте. Сравнение кривых зависимости Qпр от h, построенных при одинаковых рпл(t) для h0 и h(t),позволяет определить характер изменения Qпр при подвижном контакте и прогнозировать безводные дебиты при проектировании разработки газовых месторождений. Для заданной величины вскрытия пласта hвс изменение газонасыщенной толщины в результате подъема ГВК приводит к обводнению газовой скважины.

Характер изменения Qпр, соответствующего максимуму кривых зависимости Qпр от `h при неподвижном (кривая 1) и подвижном (кривая 2) ГВК, показан на рис. 4.14. Из кривой 2 видно, что при заданной величине hвс по мере снижения пластового давления и подъема ГВК Qпр резко снижается и по достижении h(t) = hвс скважина обводняется. Для избежания обводнения в процессе разработки необходимо синхронно с изменением h(t) изменять и вскрытую толщину пласта hвс. Только тогда скважина будет эксплуатироваться до полного истощения залежи.

Для анизотропного пласта независимо от величины параметра анизотропии n при снижении рпл и уменьшении h(t) Qпр снижается. С уменьшением вертикальной проницаемости kв или параметра анизотропии n Qпр уменьшается. Это означает, что уменьшение доли дебита за счет подтока из невскрытой части пласта происходит в результате ухудшения вертикальной проницаемости пласта. В конечном счете при существенном снижении вертикальной проницаемости безводный дебит стремится к дебиту скважины, вскрывшей пласт толщиной hвс, где имеет место только плоско-радиальная фильтрация газа к скважине. Следовательно, при снижении параметра анизотропии n наиболее выгодно полное вскрытие пласта.

Если сравнивать между собой предельные дебиты из изотропного и анизотропного пластов, то Qпр анизотропного пласта всегда меньше безводного дебита из изотропного пласта.

4.4.3.2. Методы увеличения предельного безводного дебита Qпр [10]

Способы увеличения безводного дебита:

* отыскание оптимальной величины вскрытия газоносного пласта, соответствующий максимальному, безводному дебиту;

* создание искусственных непроницаемых экранов между ГВК и нижним интервалом перфорации.

Увеличение Qпр путём отыскания hопт. При вскрытии газоносного пласта с подошвенной водой производительность вертикальной скважины зависит от степени вскрытия пласта и расстояния от забоя до ГВК. При этом, чем меньше степень вскрытия, тем больше влияние несовершенства скважины на её производительность. При небольших степенях вскрытия пласта влияние несовершенства на производительность существеннее, чем влияние депрессии на пласт. Поэтому естественно, что существует некоторая величина вскрытия, зависящая от параметров пласта и свойств газа и воды, при которой скважина дает максимальный безводный дебит.

На всех кривых зависимостей Qпр от `h (рис.4.13), построенных для изотропного и анизотропного пластов с неподвижным и подвижным ГВК, имеется точка, соответствующая максимальному значению Qпр . Значение `h в этих точках соответствует оптимальной величине вскрытия пласта. Величину hвс,опт можно определить двумя способами: аналитическим и графоаналитическим.

 

При аналитическом способе неизбежны допущения, которые снижают точность искомой величины. Поэтому лучше определять оптимальную толщину вскрытия hопт графоаналитическим методом.

Подъём ГВК в процессе разработки приводит к непрерывному уменьшению газонасыщенной толщины пласта. Для заданного вскрытия пласта hвсуменьшение во времени газонасыщенной толщины приводит к увеличению значения относительного вскрытия. Поэтому величина вскрытия, являющаяся в начале разработки оптимальной, становится неоптимальной (перемещается вправо от оптимума) и предельный, безводный дебит резко снижается. Это означает, что каждой текущей толщине газоносного пласта h(t) соответствует своя оптимальная величина вскрытия. При этом относительная величина оптимального вскрытия остается постоянной величиной (рис.4.15). С увеличением времени t, т.е. с уменьшением h(t), установленная вначале hопт растет и стремится к `h=1. При подъеме ГВК установленная вначале hопт через некоторое время оказывается в обводненной зоне, и поэтому безводный дебит равняется нулю. Это означает, что каждой текущей толщине газоносного пласта h(t) соответствует своя оптимальная величина вскрытия. При этом для заданного пласта с неизменными, кроме толщины, параметрами оптимальная величина вскрытия при учете изменения h(t) остается постоянной, как это показано кривой 2 на рис. 4.15. Приведенные закономерности указывают на то, что необходимо синхронное с подъёмом ГВК уменьшение вскрытой толщины пласта с целью обеспечения оптимального вскрытия в течение всего периода разработки.

Увеличение Qпр путём создания непроницаемого экрана. Создание непроницаемого экрана (рис. 4.16) между нижним интервалом перфорации и ГВК затрудняет прорыв в скважину конуса воды, вершина которого находится непосредственно подо дном. Уровень ГВК даже на небольшом расстоянии от ствола скважины намного ниже, чем непосредственно у ствола, что связано с распределением давления в пласте работающей скважине. Следовательно, создание искусственного непроницаемого экрана позволяет существенно снизить опасность обводнения, продлить продолжительность безводной эксплуатации скважины и увеличить саму величину дебита в несколько раз.

 

 

Размеры экрана. Характер изменения величины Qпр, соответствующей оптимальной толщине вскрытия, от радиуса непроницаемого экрана Rппоказан на рис 4.17. Видно, что изменение радиуса до 50м приводит к росту Qпр в 8 раз. Наибольшее изменение Qпрпроисходит в области изменения размера экрана до 10м. Далее темп роста Qпр значительно снижается. Кроме того , при величине вскрытия, не превышающей половины толщины газоносного пласта, создание экрана больших размеров, кроме экономической нецелесообразности, приводит к потере энергии пласта. Поэтому целесообразно создавать перегородки радиусом не более 10м.

Толщина непроницаемого экрана практически не влияет на величину допустимой депрессии на пласт и на Qпр. При небольшой толщине газоносного пласта толщину экрана можно свести к минимуму.

В неоднородных по мощности и по площади пластах возможно отклонение от цилиндрической формы экрана.

 


Дата добавления: 2018-02-15; просмотров: 984; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!