РАДИОАКТИВНОЕ ПРЕВРАЩЕНИЕ ЯДЕР



 

1.1.1. ОБЩИЕ СВЕДЕНИЯ ОБ АТОМЕ И АТОМНОМ  ЯДРЕ

Напомним некоторые понятия из основ химии и ядерной физики:

1. Атом наименьшая часть химического элемента, являющаяся носителем его свойств.

Каждому химическому элементу соответствует определенный состав атома. Атомы могут существовать как в свободном состоянии, так и в связанном в составе молекул. Все химические и физические свойства атома определяются особенностями его строения. Атомы имеют размеры порядка 10-10м и массу 10-27кг.

2. Атом состоит из ядра и вращающихся вокруг него электронов.

Модель строения атома была предложена в 1913 году датским физиком Н. Бором, за основу которой была принята планетарная модель Э. Резерфорда. Принято считать, что атом состоит из положительно заряженного ядра, вокруг которого движутся по строго определенным орбитам отрицательно заряженные частицы - электроны. Электроны удалены от ядра на расстояние примерно 10-5м. Величина заряда электрона составляет 1,6×10-19Кл, а масса меньше ядра атома водорода примерно 1840 раз и составляет 9,1×10-31кг. Основная масса атома сосредоточена в ядре, на долю электронов приходится менее 0,05% массы атома. Располагаясь на различных растояниях от атомного ядра, электроны образуют электронные слои (электронные оболочки). На каждой оболочке К (номер оболочки) может быть не более 2К2 электронов. Каждая оболочка характеризуется своим энергетическим уровнем. Если электроны заполняют свои орбиты, то атом находится в устойчивом состоянии.

Наша справка. В атоме, в ядре атома, во Вселенной взаимодействие противодействующих сил стремится к динамическому равновесию.

Если орбитальный электрон получает дополнительную энергию извне, то он переходит на более удаленную орбиту (атом становится возбужденным). Стремясь к равновесию, через некоторое время электрон вернется на свою орбиту, при этом будет выделена энергия в виде фотона равная (постоянная Планка h= 6,6262×10-34Дж/сек., ν - частота гамма-кванта).

3. Плотность ядерного вещества очень велика и составляет 1,8х1017 кг/м3. Это свидетельствует об огромной внутриядерной энергии. Наибольшая плотность ядерного вещества у элементов расположенных в средней части периодической таблицы Д.И. Менделеева.

4. Ядро имеет сложную структуру и до конца не изучено, но для понимания природы радиоактивности достаточно рассмотреть только основные его части, основные силы и некоторые основные элементарные частицы.

Элементарные частицы характеризуются массой, электрическим зарядом, спином и рядом других величин. К настоящему времени сложилась определенная классификация элементарных частиц, объединяющая их в три группы: фотоны, лептоны и адроны. К группе фотонов относится одна частица – фотон, который является переносчиком энергии электромагнитными волнами.

К группе лептонов относятся – электрон, мюон, таоон, соответствующие им нейтрино, а также их античастицы. Лептоны являются фермионами, спин им приписывают равным ½.

Основную часть элементарных частиц составляют адроны, к которым относятся каоны, h-мезоны, нуклоны, гипероны, а также их античастицы. Ведутся работы по поиску новых частиц, которые бы являлись основой для построения всех адронов. Существует гипотеза о существовании кварков, с помощью которых можно построить все известные адроны.

Ядра состоят из нуклонов. ²Нуклоны (от латинского nucleus – ядро) – общее наименование для протонов и нейтронов, из которых построены все ядра атомные, т.е. нуклон это название ядра атома, состоящего из нейтронов и протонов.

Нуклиды, общее название атомных ядер, отличающих числом нейтронов и протонов. Нуклиды с одинаковым числом в ядре химического элемента протонов и разным количеством нейтронов называются изотопами.

Протон (от греческого protos – первый), стабильная элементарная частица с положительным зарядом и массой » 1836 me. ( me – масса электрона.). Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, при этом число протонов в ядре равно атомному номеру данного элемента и, следовательно, определяет место элемента в периодической системе элементов Менделеева. Протон является андроном. Среднее время жизни протона > 1030 лет. При определенных условиях (слабом взаимодействии) протон при внутриядерных превращениях переходит в нейтрон, проявляющегося в виде бета - распада ядер и электронного захвата с выбросом позитрона (заряд равен +1) и нейтрино.

Нейтрон – электрически нейтральная элементарная частица с массой (» 1840 me), незначительно превышающей массу протона. Относится к классу андронов. Среднее время жизни нейтрона » 15,3 мин. При слабом взаимодействии нейтрон может превратится в протон через бета – распад с выбросом электрона (заряд равен –1) и антинейтрино.

Позитрон – элементарная частица, которая по массе равна массе электрона, но имеет положительный заряд равный по величине заряду электрона.

5. Прочность ядру придают нейтроны и пи-мезоны, как частицы "ядерного клея". И если протон обладает стягивающими и отталкивающими свойствами, то нейтроны - только стягивающими свойствами. Внутри ядра протоны и нейтроны обмениваются друг с другом пи-мезоном (сгустком электромагнитной энергии из       мезонного облака), что придает прочность ядру. Пи-мезон в 7 раз легче протона и в 270 раз тяжелее электрона.

6. Прочность ядра зависит от соотношения полей в ядре: электрического, гравитационного, ядерного, электромагнитного, слабого. Радиус действия ядерных сил равен радиусу нуклона (порядка 10-13 м). Ядерное поле самое сильное.

7. В ядре атома протон может делиться на нейтрон, позитрон и нейтрино. Нейтрон может делиться на протон, электрон и антинейтрино.

8. Количество электронов (отрицательный заряд) на орбитах атома равно числу протонов (положительный заряд) в ядре. В этом состоянии атом относительно устойчив и электрически нейтрален.

9. Число протонов в ядре строго определенно, а нейтронов может быть разное количество, но такое, которое придает устойчивость ядру. Вещества, отличающиеся только количеством нейтронов в ядре, называют изотопами.

10. Экспериментально показано, что масса ядра меньше суммы масс входящих нук­лонов. Это явление называют дефектом массы, и объясняется теорией относительности А. Энштейна.

Масса атома, ядра и его составных частей измеряется в атомных единицах массы (АЕМ). 1 АЕМ равна 1/12 массы атома углерода-12, что составляет 1,66×10-27кг. Однако если просуммировать массы протонов и нейтронов в атомном ядре (масса протона – 1,007277 АЕМ, нейтрона – 1,086652 АЕМ), то получается некоторое расхождение с величинами массы ядра, найденным экспериментальным путем, т.е. образуется дефект массы. Поясним, что это означает. Согласно теории относительности А. Энштейна энергия частиц подчиняется закону Е = mС2 (где m - масса частицы, С - скорость света). Из уравнения следует, что каждому изменению массы частицы должно отвечать соответствующее изменение энергии. Энергия, которую необходимо затратить для разрушения ядра и разделения его на свободные нуклоны, названа энергией связи ядра.Чем сильнее взаимодействуют нуклоны между собой в данном ядре, тем большую работу нужно совершить для его разрушения. При обратном процессе - процессе образования ядра из свободных нуклонов - ядерные силы совершают работу, поэтому и в этом случае также выделяется энергия.Однако, прочность ядра определяет не полная энергия связи, а энергия связи, приходящаяся на один нуклон, т.е. удельная энергия связи. Прочность различных ядер неодинакова. Наиболее прочными являюися ядра с числом нуклонов около 60. Свойство дефекта массы используется для выделения внутриядерной энергии в реакциях деления и синтеза ядер атомов.

 

1.1.2. ЯВЛЕНИЕ РАДИОАКТИВНОСТИ

 

Впервые способность ядер тяжелых элементов самопроизвольно распадаться была обнаружена Беккерелем в 1896 году. Позднее Резерфорд и супруги Кюри показали, что ядра некоторых элементов испытывают последовательные превращения, образуя радиоактивные ряды радиоактивных элементов, где каждый элемент ряда возникает из предыдущего, причем никакими внешними физическими воздействиями (температура, электрические и магнитные поля, давление и т.д.) нельзя повлиять на характеристики распада.

Способность некоторых неустойчивых атомных ядер самопроизвольно превращаться в ядра других элементов с испусканием различных видов радиоактивных излучений называют радиоактивностью, а изотопы, ядра которых способны самопроизвольно распадаться - радионуклидами.

Имеются радионуклиды средней части таблицы Д.И. Менделеева и три радиоактивныхряда ( семейства) тяжелых радионуклидов. Родоначальниками радиоактивных рядов являются: торий – 232, уран – 238, уран – 235.

Количество ядерных превращений тяжелых радионуклидов может быть различным, но последним элементом, ядра которого не распадаются, является свинец. Радиоактивный распад описывается при помощи уравнений на основе равенства сумм зарядов и массовых чисел:

 

M1                    M2               M3

    X ---------> Y     + частица                                   (1.1)

                               Z1                   Z2             Z3

 

Здесь М – массовое число, равное сумме протонов и нейтронов в ядре;

M = Z+n,                                             (1.2)

 

где:Z - число протонов в ядре;

n - количество нейтронов в ядре.

Выполнение закона сохранения массового числа:

М1 = М2 + М3                                                            (1.3)

Выполнение закона сохранения электрического заряда:

                                           Z1 = Z2 + Z3                                           (1.4)

 

Известны 4 типа радиоактивного распада: альфа-распад, бета-распад, спонтанное деление атомных ядер (нейтронный распад), протонная радиоактивность (протонный синтез).

  Альфа-распад - характерен для ядер тяжелых элементов. Пример:

239        235   4

                                           Pu -----> U + α                          (1.5.)

94          92    2

 

При альфа-распаде ядро атома испускает два протона и два нейтрона, связанные в ядро атома гелия 42Н,т.е. альфа-частица является ядром атома гелия. Таким образом, в результате альфа-распада образуется атом элемента, смещенный на два места от исходного радиоактивного элемента к началу периодической системы И.Д. Менделеева. Энергия альфа-частиц может быть в пределах 1 – 10 МэВ.Скорость движения альфа – частиц в воздухе 107 м/с.

Бета – распад – это процесс превращения в ядре атома протона в нейтрон или нейтрона в протон. Бета – распад характерен для 80 % радиоактивных изотопов. Бета – распад объединяет три самостоятельных вида радиоактивных превращений:

1. Выбрасывание электрона и антинейтрино - -b - распад;

2. Выбрасывание позитрона и нейтрино - +b - распад;

3. Поглощение электрона с ближайших к ядру электронных оболочек. При этом заряд ядра поглотителя, как и при +b - распаде, уменьшается на единицу.

Как правило, -b - распад происходит с ядрами тяжелых радиоактивных изотопов, у которых имеется избыток нейтронов.

Процесс +b - распад наблюдается в основном для легких радиоактивных изотопов.

Поглощение электрона ядром (орбитальный захват) это тоже процесс присущий легким изотопам, стремящихся к обмену протона на нейтрон.

Как предполагают физики, процесс бета – распад во многом определяется соотношением нейтронов и протонов в ядре атома.

Для равновесия в ядре должно быть определенное сочетание количества протонов и нейтронов. При этом нейтронов для придания устойчивости ядру должно быть больше по мере роста порядкового номера химического элемента. Однако, если имеет место чрезмерный избыток нейтронов, то ядро становится неустойчивым, что вызывает превращение нейтрона в протон. При этом образуется химический элемент с порядковым номером на единицу больше, а материнское ядро испускает электрон и антинейтрино. Если в ядре избыток протонов по сравнению с нейтронами, то протон превращается в нейтрон с испусканием позитрона и нейтрино. При этом образуется химический элемент с порядковым номером на единицу меньше материнского. Приведем примеры таких распадов.

Электронный распад:

                    40    40

                          К -------> Са + е- (электрон) + n(антинейтрино)     (1.6)

                          19    20      (нейтрон ----> протон)

Позитронный распад:

 

                             22        22

                               Nа ------> Nе + е+(позитрон) + n(нейтрино)          (1.7)

                             11        10        (протон ----> нейтрон)

 

Энергия бета-частиц изменяется в больших пределах и может достигать 13,5 МэВ. Бета-частицы распространяются в среде со скоростью 0,29 – 0,99 скорости света.

Примечание. Так как массы выбрасываемых электрона, позитрона, нейтрино и антинейтрино крайне малы по сравнению с массой протонов и нейтронов, то массовое число атома можно считать неизменным.

  Иногда радиоактивный распад сопровождается выбросом не только бета- или альфа-частиц, но и гамма-квантов.

Гамма-кванты – это электромагнитное излучение с частотой до1020 с-1, с энергией до 10 МэВ. Это происходит в том случае, если при распаде не вся энергия передается выбрасываемому электрону, позитрону или альфа частице. Например:

                                     24          24

                       Nа ------> Мg + b + 2g                                      (1.8.)

                                     11          12

Примечание. Заметим, что как самостоятельный вид гамма-распад не существует.

  Радиоактивные превращения ядер могут происходить и при захвате ядром орбитального электрона (К-захват):

                                                64      64

                               Сu + е- --------> Ni                                        (1.9.)    

                                                 29                  28

  Позитронный распад и К-захват являются конкурирующими процессами, т.е. если возможен позитронный распад, то и К-захват тоже. К-захват характерен для нейтронно дефицитных ядер. Поглотив орбитальный электрон, протон превращается в нейтрон. При этом на освободившееся место на орбите, электрон переходит с более высокого энергетического уровня, а атом испускает характеристическое рентгеновское излучение, по которому обычно и фиксируется К-захват.

Спонтанное деление атомных ядер (нейтронный распад) –это самопроизвольное деление некоторых тяжелых ядер (уран-238, калифорний-240, 248, 249, 250; кюрий-244, 248 и др.). Вероятность самопроизвольного деления ядер незначительна по сравнению с альфа-распадом. Процесс самопроизвольного деления ядер происходит из-за того, что ядра сами по себе нестабильны. При этом происходит расщепление ядра на два осколка (ядра), близких по массе (рис.1.1.). При самопроизвольном делении имеет место неравентство  mЯД  > m1  + m2.

Здесь mяд - масса ядра,  m1 и m2 – массы ядер-осколков, образующиеся в результате распада ядра. Кинетическая энергия ядер-осколков во много раз больше энергии альфа частиц. Кроме того, выбрасывается некоторое количество нейтронов, обычно 2 - 3 на акт деления. Другой отличительной особенностью деления является огромное энерговыделение (в миллионы раз больше, чем при сжигании органического топлива). И наконец, продукты деления являются радиоактивными. Ядра-осколки перегружены нейтронами и поэтому испускают нейтроны, бета-частицы и гамма-кванты. То есть, при делении тяжелых ядер появляются различного рода ионизирующие излучения.

 

 


Рис.1.1. Схема одного из вариантов спонтанного деления ядра урана-238

 

Протонная радиоактивность.Как известно, космическое излучение представляет собой поток протонов (90%), альфа-частиц (9%), остальные – это ядра легких элементов и другие элементарные частицы. Пояснение протонной радиоактивности рассмотрим на примере протекания термоядерных реакций на Солнце.

  Как уже отмечалось ранее, протон стабильная частица и является ядром самого распространенного изотопа водорода-протия. Протон участвует во всех процессах взаимодействия элементарных частиц. Солнце содержит много водорода (примерно 50% массы Солнца, остальную часть составляют углерод, азот, кислород). Температура центральной части Солнца находится в пределах 1,2×107К – 1,5×107К. При такой температуре все легкие элементы полностью ионизированы, так что вещество представляет собой плазму – смесь протонов (ядер водорода), электронов, легких ядер (альфа-частицы) и незначительное количество средних и тяжелых ядер. В этих условиях основной источник энергии связан с превращением водорода в гелий. При “низких” температурах около 107К доминируют реакции, при которых происходит непосредственный захват протонов протонами. При температуре около 2×107К основную роль играет реакция, при которой синтез гелия реализуется с помощью ядер углерода и азота. В отличие от первой реакции вторая реакция протекает очень быстро, так как количество ядер тяжелого водорода (21Н) в звездах неизмеримо мало. Далее, из всех возможных наиболее вероятна следующая реакция:

 

 

3        3                  4                                  1

    Не + Не ----------> Не (альфа-частица) + 2 Н(р)

2        2                  2                                   1

Энергия альфа-частицы = 12,8 МэВ. Известно, что при температурах 2×107К превращение протона в альфа частицу (гелий) идет с помощью ядер-катализаторов – углерода и азота. Термоядерные реакции возможны и в земных условиях и реализованы в термоядерных боеприпасах, которые рассматриваются в отдельной теме.

 

 

1.1.3. ОСНОВНОЙ ЗАКОН РАДИОАКТИВНОГО РАСПАДА РАДИОНУКЛИДА

  В результате всех видов радиоактивных превращений количество ядер данного изотопа постепенно уменьшается. Убывание количества распадающихся ядер происходит по экспоненте и записывается в следующем виде:

N=N0е-lt                                                  (1.10)

где N0– количество ядер радионуклида в момент начала отсчета времени

(t =0); l - постоянная распада, которая для различных радионуклидов разная; N– количество ядер радионуклида спустя время t; е – основание натурального логарифма (е = 2,713….). Это и есть основной закон радиоактивного распада.

Вывод формулы (1.10.). Естественный радиоактивный распад ядер протекает самопроизвольно, без всякого воздействия из вне. Этот процесс статистический и для отдельно взятого ядра можно лишь указать вероятность распада за определенное время. Поэтому скорость радиоактивного распада можно характеризовать временем t. В практических расчетах для оценки характеристик радиационного излучения используется понятие периода полураспада Т1/2. Периодом полураспада называется промежуток времени, в течении которого исходное число радиоактивных ядер уменьшится вдвое, а число распавшихся ядер за время Т1/2 остается постоянным (l = const).

 

Пусть имеется число N атомов радионуклида. Тогда, число распадающихся атомов dN за время dt пропорционально числу атомов N и промежутку времени dt:

 

                                                 dN = - lNdt                                                     (1.11)

 

где l - коэффициент пропорциональности, называемый постоянной распада. Знак минус показывает, что число N исходных атомов уменьшается во времени. Экспериментально показано, что свойства ядер со временем не меняются, от сюда следует, что l есть величена постоянная. Она носит название постоянная распада. Из (1.11) следует, что

l = -  = const,

Экспериментально показано, что свойства ядер со временем не меняются, от сюда следует, что l есть величена постоянная. Она носит название постоянная распада. Из (1.11) следует, что

l = -  = const,

В уравнении (1.11.) поделим правую и левую части на N и проинтегрируем:

  

                     dN/N = - ldt                                                (1.12)

N               t      

      ∫dN/N = – λ∫ dt                                                           (1.13)

                                                           N0              0

                    ln N/N0  = – λt             и   N = N0 е– λt ,                      (1.14.)

где N0  есть начальное число распадающихся атомов (N при t =0).

В практических расчетах для временной оценки характеристик радиационного излучения используется понятие периода полураспада Т1/2. Периодом полураспада называется промежуток времени, в течении которого исходное число радиоактивных ядер уменьшится вдвое, а число распавшихся ядер за время Т1/2 остается постоянным (l = const).

Найдем связь постоянной радиоативного распада с периодом полураспада для чего в уравнении (1.10.) правую и левую часть поделим на N,и приведем к виду:

N0/N = е-lt                                                     (1.16.)

Полагая, что N0/N = 2, а t = T, получим ln2 = lТ, откуда

 

ln2 = 0,693        l = 0,693/T                (1.17.)

Подставив выражение (1.17.) в (1.10.) получим

N = N0е-0.693t/T                                          (1.18.)

 


t
0,125
     .

 

 

 


Рис. 1.2. Изменение числа распавшихся ядер исходного элемента со временем.

На графике (рис.1.2.) показана зависимость числа распадающихся атомов от времени. Из графика следует, что в несколько первых полупериодов распад происходит быстро, а затем медленно. Теоретически кривая экспонента никогда не может слиться с осью абсцисс, но на практике можно считать, что примерно через 10 – 20 периодов полураспада радиоактивное вещество распадается полностью.

 

Основной характеристикой источника радиационного излучения является его активность.

АКТИВНОСТЬ - это физическая величина, характеризующая число радиоактивных распадов в единицу времени.

или

АКТИВНОСТЬ - это отношение числа спонтанных (вероятных) ядерных переходов из определенного ядерно-энергетического состояния радионуклида за интервал времени.

 

А = .                                                           (1.19)

 

Исходя из определения активности, следует, что активность характеризует скорость ядерных переходов в единицу времени. С другой стороны, количество ядерных переходов зависит от постоянной радиоактивного распада.


Дата добавления: 2018-02-15; просмотров: 1326; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!