Показатели эффективности работы СМО



1. Интенсивность потока обслуживания заявок

2. Коэффициент загрузки СМО

3. Вероятность образования очереди

4. Вероятность отказа системы

5. Пропускная способность

6. Среднее число заявок, находящихся в очереди

7. Среднее число заявок, обслуживаемых СМО

8. Среднее число заявок, находящихся в СМО

9. Среднее время заявки в СМО

10. Среднее время пребывания заявки в очереди

11. Среднее число занятых каналов.

Судить о качестве полученной системы нужно по сов-ти значений показателей. При анализе результатов моделирования важно обращать внимание на интересы клиента и владельца системы. В частности, следует min-ть или max-ть тот или иной показатель.

26. Одноканальная СМО

27. Одноканальная СМО с отказами

28. Многоканальная СМО с ограниченной очередью

Параметры СМО:

o Интенсивность потока заявок.

o Интенсивность потока обслуживания.

o Среднее t обслуживания заявки.

o Кол-во каналов обслуживания.

o Дисциплина обслуживания.

< СМО на примере работы АЗС. Несколько одинак. колонок, произв-ть кот.известна. Если колонки заняты, то обслуживание в очереди м. ждать не > 3х машин одновременно. Очередь считаем общей. Если все места в очереди заняты, то машина получает отказ в обслуживании.

29. Транспортная задача

-широкий круг задач не только транспортного хар-ра, распределение ресурсов, наход-ся у неск. поставщиков, д/другого произвольного числа потребителей. Д/перевозчиков наиболее часто отн-ся к транспорту:

1. Привязка потребителей к ресурсам производителей.

2. Привязка к пунктам назначения пунктов отправления.

3. Взаимопривязка грузопотока прямого и обратного направления.

4. Оптимальное распределение V выпуска промышл. продукции м/у изготов-ми.

< модель привязки к пункту назначения. Известны: пункты отправления и назначения, объемы отправления по к-му пункту, потребность в грузе, стоимость доставки по каждому варианту. Н. оптимальный план перевозок с min транспортными издержками.

30. Тр. задача закрытая - ∑Vотправл. грузов= ∑V потреб-ти в этом грузе, т.е. ∑ai=∑bj (m – число поставщиков, n – число потребителей).

31. Если это условие невозможно – открытая тр. задача. Тогда  ее надо привести к закрытой:

1. Если потребность пунктов назначения превышает запасы пунктов отправления, то вводится фиктивный поставщик с недостающимV отправления.

2. Весь запас поставщиков > потребности, то ввод-сяфикт. потребитель.

32. Алгоритм решения задачи методом потенциалов (этапы):

1. Разработка начального плана (опорного решения).

2. Расчет потенциалов.

3. Проверка плана на оптимальность.

4. Поиск max звена не оптимальности (если п.3 не выполнен)

5. Составление контура перераспределения ресурсов.

6. Определение min эл-та в контуре перераспр-ния и перераспр. ресурсов по контуру.

7. Получение нового плана.

Эта процедура повторяется несколько раз, пока не будет найдено оптимальное решение. Алгоритм остается неизменным.Методы отыскания начального плана:

1. Метод С-З угла

2. Метод min стоимости

3. Метод двойного предпочтения

Метод потенциалов позволяет за конечное число планов найти оптимальный. (Метод Фогеля) Метод потенциалов разработан д/классич. транспорт.задач, но такие встречаются редко, приходится вводить ряд ограничений.

33.В экономике организации встреч-ся норма задач, кот.м.б. сведены к транспортной задаче:

1. Отд. поставки от опред. поставщиков некот. потребителями д.б. исключены из-за отсутствия необх. усл. хранения, перегрузки коммуникаций, и т.д.

2. Организ. необх. опред. min ∑затраты на пр-во и транспортировку продукции. М. оказаться экономич. более выгодным доставлять сырье из более отдал.пунктов, но при <себест-ти. Критерий оптимальности принимает ∑ затрат на пр-во и тран-ку.

3. Ряд трансп. маршрутов имеют ограничения по пропускной спос-ти.

4. Поставки по определ. маршрутам обязательны и обязат. д. войти в оптим. план.

5. Экономическая задача не является транспортной. (Пр. – распределение произв. изделий м/у предприятиями).

6. Необходимость max-ть целевую ф-ю задачи транспортного типа.

7. Необходимость в одно и то же t распределить груз различного рода по потребителям – Многопродуктовая транспортная задача.

8. Доставка грузов в краткий срок. (Метод потенциалов не пригоден, решается с пом. спец. алгоритма).

34. Транспортная задача в сетевой подстановке

 - если условие транспортной задачи задано в виде схемы, на кот.изображены поставщики, потребители и связыв. их дороги, указаны величины запасов груза и потребностей в нем и показатели критерия оптимальности (тарифы, расстояния).В вершинах (узлах) сети изображают поставщиков и потребителей. Запасы груза считают положительными, а потребности отрицательными числами. Ребра (дуги) сети – дороги.Решение трансп. задачи в сетевой постановке основано на методе потенциалов и нач-ся с построения начального опорного плана, который должен удовлетворять требованиям:

1. Все запасы должны быть распределены, а потребители удовлетворены.

2. Для каждой вершины должна быть указана поставка груза (+ или -)

3. Общее количество поставок должно быть на 1 меньше числа вершин.

4. Стрелки, которыми обозначают поставки, не д. образовывать замкн. контур.

Затем план проверяют на оптимальность, для чего вычисляют потенциалы. Получают новый план и снова исследуют на оптимальность. Определяют значение целевой функции.

В случае открытой модели вводят фиктивного потребителя или поставщика.

35.Д/решения научных и практических задач в области логистики прим. основные методы:

1. Методы системного анализа

2. Методы теории исследования операции

3. Кибернетические методы

4. Метод прогнозирования

5. Методы экспертных оценок

6. Методы моделирования

36.Наиболее часть в логистике применяется имитац. моделирование, в кот.закономерности, определяющие количественное отношение остаются неизвестными, а сам логистический процесс остается «черным ящиком» или «серым ящиком».

К основным процессам имитац. моделирования отн-ся:

1. Конструирование модели реальной системы.

2. Постановка экспериментов на этой модели.

Цели моделирования:

o Определение поведения логистической системы.

o Выбор стратегии д/обеспеч. наиб.эфф-го функционирования логистич. системы.

Имитац. моделирование целесообразно исполнять, когда вып-ся условия:

1. Не сущ. законченой постановки задач или не разработаны аналитические методы решения сформулиров. матем. модели.

2. Аналитич. модель имеется, но процедуры сложны и трудоемки, сл. имитац. моделирование дает более простой способ решения задачи.

3. Аналитич. решения сущ., но их реализация невозможна из-за недостаточной математической подготовки персонала.

37.Широкое применение в логистике нашли экспертные системы – спец. комп.программы, кот. помогают специалистам принимать решения, связ. с управлением материальным потоком.

Экспертная система позволяет:

1. Принимать быстрые и качественные решения в области управления материальными потоками.

2. подготовить опытных специалистов за отн-но короткий срок.

3. Сохранить ноу-хау компании.

4. Использовать опыт и знания высококвалифицированных специалистов на различных рабочих местах.

Недостатки экспертной системы:

1. Ограниченные воз-ти использования здравого смысла.

2. Невозм-но учесть все особенности в программе экспертной системы.


Дата добавления: 2018-02-15; просмотров: 582;