Статические источники реактивной мощности

Компенсация

Реактивной мощности в энергосистеме.

 

 

В отличие от активной мощности реактивная мощность может генериро-ваться не только генераторами электростанций, но и устройствами, которые называются компенсирующими (КУ). Эти устройства располагают в непосредственной близости от потребителей. К ним относятся:

· синхронные компенсаторы (СК);

· батареи конденсаторов (БК);

· статические источники реактивной мощности (СТК или ИРМ).

Опыт экстплуатации показывает, что при номинальной нагрузкегенераторы ЭС вырабатывают около 60 % требуемой реактивной мощности, 20 % генерируется линиями электропередач высокого напряжения, 20 % вырабатывают компенсирующие устройства.

Выработка 1 кВар реактивной мощности на ЭС стоит в несколько раз дешевле, чем ее выработка с помощью КУ. Но технико-экономические расчеты показывают, что большая часть реактивной мощности должна вырабатываться КУ. Это объясняется внедрением мощных генераторов с относительно высоким cos φ, ростом протяженности и напряжения передачи. Поэтому снижается экономичность выработки реактивной мощности генераторами ЭС.

Компенсация реактивной мощности применяется для следующих целей:

· для выполнения баланса реактивной мощности;

· для снижения потерь мощности и электроэнергии;

· для регулирования напряжения.

При использовании КУ необходимо учитывать ограничения их мощности по техническим и режимным требованиям. Мощность КУ должна удовлетворять:

· необходимому резерву мощности в узлах нагрузки;

· располагаемой реактивной мощности на ЭС;

· отклонению напряжения на шинах потребителей;

· пропускной способности ЛЕП.

Для уменьшения перетоков реактивной мощности по ЛЕП и трансформаторам КУ должны размещаться вблизи мест потребления реактивной мощности. При этом элементы сети разгружаются по реактивной мощности. Это приводит к уменьшению потерь мощности и напряжения.

 

Поперечная компенсация

 

 

Поперечная компенсация применяется для уменьшения перетоков реактивной мощности в сети. Батареи конденсаторов в этом случае подключают на шины 6-10 кВ подстанций параллельно нагрузке. Это приводит к уменьшению потерь мощности и напряжения во всей сети до точки подключения БК. Покажем это на примере простейшей сети (рис. 1).

 

 

Схемы замещения и распределение мощности до и после подключения БК показаны на рис. 2.

 

 

Векторные диаграммы токов и мощностей показаны на рис. 3

 

 

Векторная диаграмма напряжений приведена на рис. 4. Построение векторной диаграммы до использования батареи конденсаторов выполняется также как и для ЛЭП с одной нагрузкой в сети 35 кВ.

 

Для получения значения напряжения в начале передачи к напряжению в конце передачи нужно добавить падение напряжения от тока нагрузки в активном и реактивном сопротивлениях ЛЭП. На векторной диаграмме это треугольник авс. Величина фазного напряжения в начале передачи до подключения КУ равна U1 ф. Отрезок ас' численно равен потере напряжения в сети.

Достраиваем треугольник падения напряжения от тока БК в сопротивлениях ЛЭП. Это треугольник cde. Соединяем начало координат с точкой е и определяем величину фазного напряжения в начале ЛЭП после установки БК U1 ф с БК. По модулю U1 ф с БК меньшне напряжения U1 ф.

Величина потери напряжения после установки БК численно равна отрезку ае'. Сравниваем отрезки ас' и ае' и видим, что подключение БК приводит к уменьшению потери напряжения.

Из анализа можно сделать вывод, что при заданном напряжении в начале участка сети при установке БК улучшается режим напряжения в конце участка.

Оценим влияние величины мощности нагрузки. При малых нагрузках уменьшаются размеры треугольника авс. Если используется нерегулируемая БК, размеры треугольника cde остаются без изменений. В этом режиме напряжение в конце передачи может быть больше напряжения в начале передачи. Это недопустимо. Следовательно, нужно использовать регулируемые БК. Эффект регулирования тем больше, чем больше мощность БК и индуктивное сопротивление сети.

Таким образом, на векторных диаграммах видно, что величина тока, мощности и потери напряжения в линии электропередач, уменьшилась после подключения на шины потребителя батареи конденсаторов. Этот вывод следует и из расчетных формул:

 

Параметр Без БК С БК
     
Мощность
     
Ток
     
Потеря мощности      
Потеря напряжения

 

Выбор мощности батарей конденсаторов при поперечной компенсации

КУ, устанавливаемых вблизи потребителей в системе, в целом определяется на основе баланса реактивной мощности. Однако, в распределительной сети 35-110 кВ величина  определяется по величине экономического тангенса. Его значение устанавливается энергосистемой в зависимости от питающего напряжения сети. Для  , , .

Значение тангенса нагрузки рассчитывается следующим образом:

.

Если его значение больше значения экономического тангенса, применяют компенсацию реактивной мощности и понижают тангенс нагрузки:

 

.

 

Выполним преобразования приведенного выражения:

 

.

 

Мощность компенсирующей установки равна:

 

 

Значение Рнагр выбирается по графику узла нагрузки. Это наибольшая активная мощность узла нагрузки в часы наибольших нагрузок в энергосистеме (с 9 до 11 или с 17 до 21 часа). Для этого же часа выбирается и значение реактивной мощности и определяется тангенс нагрузки.

Очевидно, что если , то необходимости в компенсации  нет.

Чаще всего на потребительских ПС в качестве КУ используются конденсаторные батареи в виде комплектных установок типа УК. В сети 6 кВ применяются УК мощностью 300, 400, 450, 675, 900, 1125, 1350, 1800 и 2700 кВар. В сети 10 кВ применяются УК, начиная с мощности 450 кВар.

Мощность КУ распределяется равномерно на секции шин 6-10 кВ ПС, т.е. количество однотипных УК должно быть кратно 2 при двухобмоточных и трехобмоточных трансформаторах (типа ТМ, ТМН, ТДН, ТДТН, АТ) подстанций и кратно 4 – при трансформаторах с расщепленной обмоткой низкого напряжения (типа ТРДН).

Продольная компенсация

 

Продольная компенсация применяется для уменьшения реактивного сопротивления ЛЭП. Компенсация обеспечивается последовательным включением в рассечку ЛЭП емкостного сопротивления в виде конденсаторов. Построим векторную диаграмму напряжений с УПК для следующей сети (рис. 5).

 

Векторная диаграмма напряжений до применения УПК аналогична векторной диаграмме для ЛЭП с одной нагрузкой в сети 35 кВ (рис. 6). В результате построения получаем величину напряжения в начале передачи U. При введении УПК в рассечку ЛЭП уменьшается индуктивное сопротивление сети и составляющая падения в реактивном сопротивлении – отрезок bd вместо bc. Соединим начало координат с точкой d и получим вектор напряжения в начале передачи при использовании УПК. Оценим влияние УПК на составляющие падения напряжения.

Продольная (отрезок ас’) и поперечная (отрезок сс’) составляющие падения напряжения в исходной сети равны:

 

 

 

При компенсации:

· продольная (отрезок аd ’ )

 

 

· поперечная (отрезок dd ’ )

 

 

 

 

Из векторной диаграммы следует применение УПК приводит к уменьшению напряжения в начале передачи, продольной и поперечной составляющих падения напряжения.

Если подобрать УПК так, что Х = Хс, т.е обеспечить полную компенсацию индуктивного сопротивления ЛЭП, то падение напряжения будет определяться только величиной активного сопротивления ЛЭП

                       

 

В этом случае напряжение в начале передачи будет равно отрезку ob.

Можно найти такое значение Хс, чтобы потеря напряжения в сети равнялась нулю. Если пренебречь поперечной составляющей падения напряжения, имеем

 

.

 

Найдем величину Хс:

 

;

 

.

 

По величине Хс подбирают мощность батареи конденсаторов. На практике чаще всего не применяют полную компенсацию и сопротивление УПК рассчитывают из потери напряжения, которая обеспечивает желаемый уровень напряжения в сети.

Из формулы для расчета потери напряжения с учетом УПК видно, что применение конденсаторов целесообразно при значительной реактивной составляющей тока, т.е. когда  близок к единице. При малых значениях  потеря напряжения в ЛЭП определяется в основном активным сопротивлением.

Достоинства УПК:

· автоматическое и безынерционное регулирование напряжения;

· отсутствие движущихся частей делает установки простыми и надежными в эксплуатации;

· при одинаковом регулирующем эффекте мощность БК, выбранной только для регулирования напряжения, меньше чем при поперечной компенсации.

Недостатки:

· возможны резонансные явления, которые вызывают качания роторов двигателей, мигание ламп накаливания;

· увеличение токов короткого замыкания;

· при коротких замыканиях возникает опасность появления на конденсаторах высокого напряжения. Поэтому для шунтирования БК при коротких замыканиях применяют быстродействующие разрядники.

 

 

Статические источники реактивной мощности

 

Батареи конденсаторов обладают существенным недостатком – изменение мощности БК носит ступенчатый характер. Источники нового типа – статические источники реактивной мощности (ИРМ или СТК) не обладают этим недостатком. СТК состоит из нерегулируемой батареи конденсаторов и регулируемого реактора. Батарея конденсаторов и реактор могут быть включены и последовательно (рис. 7.а), и параллельно (рис. 7. б). Плавность регулирования обеспечивает тиристорный блок управления (ТБУ).

Статические источники реактивной мощности применяются на различных напряжениях. Опыт эксплуатации и проведенные исследования позволяют утверждать, что в ряде случаев применение СТК эффективнее применения синхронных компенсаторов.

 

Больший интерес представляют СТК с параллельным включением батареи конденсаторов и реактора. Суммарная мощность СТК при параллельном соединении равна:

 

 

Величины реактивной мощности реактора и батареи конденсаторов определяются следующим образом:

 

         

 

Диапазон изменения мощности СТК (регулировочный диапазон) определяется соотношением мощностей батареи конденсаторов и реактора. Если батарея конденсатор и реактор имеют одинаковую по величине мощность и мощность реактора меняется от нуля до номинальной мощности, то мощность СТК изменяется в диапазоне:

 

 

В этом случае СТК генерирует реактивную мощность.

Если мощность реактора больше мощности батареи конденсаторов, то СТК может работать и в режиме генерирования, и в режиме потребления реактивной мощности. Переход из одного режима в другой выполняется плавно.

Недостатки СТК с параллельным включением:

- отрицательный регулирующий эффект (при увеличении напряжения необходимо уменьшить выработку реактивной мощности, происходит ее увеличение);

- резонанс напряжения при переходе из одного режима работы в другой.

 


Дата добавления: 2021-06-02; просмотров: 147; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!