Классификация тепловых аппаратов и их структура



Лекция 7

Основы тепловой обработки пищевых продуктов

Основы тепловой обработки пищевых продуктов

При тепловой обработке изменяются структурно-механические, физико-химические и органолептические свойства продукта, определяющие степень кулинарной готовности. Нагревание вызывает в продукте изменения белков, жиров, углеводов, витаминов и минеральных веществ.

Основными приемами тепловой обработки продуктов являются варка и жаренье, применяемые как самостоятельные процессы, так и в различных комбинациях. Каждый из приемов имеет несколько разновидностей. Для реализации этих приемов используют различные способы нагрева продуктов: поверхностный, объемный, комбинированный. При всех способах нагрева продуктов внешний теплообмен сопровождается массопереносом, в результате которого часть влаги переходит во внешнюю среду. При тепловой обработке продуктов в жидких средах вместе с влагой также теряется часть сухих веществ.

Практически все продукты являются капиллярно-пористыми телами, в капиллярах которых жидкость удерживается силами поверхностного натяжения. При нагревании продуктов эта жидкость начинает мигрировать (перемещаться) от нагретых слоев к более холодным.

При жаренье продуктов влага из поверхностных слоев частично испаряется, а частично перемещается вглубь к более холодным участкам, что приводит к образованию сухой корочки, где происходит термический распад органических веществ (при температуре более 100 °С). Чем быстрее нагревается поверхность, тем интенсивнее происходит перенос тепла и влаги, тем быстрее образуется поверхностная корочка.

Поверхностный нагрев продукта осуществляется теплопроводностью и конвекцией при подводе теплоты к центру продукта через наружную поверхность. При этом нагрев центральной части продукта и доведение до кулинарной готовности происходят в основном за счет теплопроводности.

Интенсивность теплообмена зависит от геометрической формы, размеров и физических параметров продукта, режима движения, температуры и физических параметров греющей среды. Продолжительность процесса тепловой обработки при поверхностном нагреве обусловлена низкой теплопроводностью большинства продуктов.

Объемный способ подвода тепла к обрабатываемому продукту реализуется в аппаратах с инфракрасным (ИК), сверхвысокочастотным (СВЧ), электроконтактным (ЭК) и индукционным нагревом.

Инфракрасное излучение преобразуется в объеме обрабатываемого продукта в теплоту без непосредственного контакта между источником ИК-энергии и самим изделием. Носителями ИК-энергии являются электромагнитные колебания переменного электромагнитного поля, возникающие в продукте.

Инфракрасная энергия в обрабатываемом продукте образуется при переходе электронов с одних энергетических уровней на другие, а также при колебательном и вращательном движениях атомов и молекул. Переходы электронов, движение атомов и молекул происходят при любой температуре, но с ее повышением интенсивность ИК-излучения увеличивается.

СВЧ-нагрев продуктов осуществляется за счет преобразования энергии переменного электромагнитного поля сверхвысокой частоты в тепловую энергию, генерируемую по всему объему продукта. СВЧ-поле способно проникать в обрабатываемый продукт на значительную глубину и осуществлять его объемный нагрев независимо от теплопроводности, т.е. применяться для продуктов с различной влажностью. Высокая скорость и высокий коэффициент полезного действия нагрева делают его одним из самых эффективных способов доведения пищевых продуктов до кулинарной готовности.

СВЧ-нагрев называют диэлектрическим из-за того, что большинство продуктов плохо проводят электрический ток (диэлектрики). Другие его названия — микроволновый, объемный — подчеркивают короткую длину волны электромагнитного поля и сущность тепловой обработки продукта, происходящей по всему объему.

Эффект разогрева продуктов в СВЧ-поле связан с их диэлектрическими свойствами, которые определяются поведением в таком поле связанных зарядов. Смещение связанных зарядов под действием внешнего электрического поля называется поляризацией. Наибольшие затраты энергии внешнего электрического поля связаны с дипольной поляризацией, которая возникает в результате воздействия электромагнитного поля на полярные молекулы, обладающие собственным ди-польным моментом. Примером полярной молекулы является молекула воды. При отсутствии внешнего поля дипольные моменты молекул имеют произвольные направления. В электрическом поле на полярные молекулы действуют силы, стремящиеся повернуть их таким образом, чтобы дипольные моменты молекул совпадали. Поляризация диэлектрика состоит в том, что его диполи устанавливаются в направлении электрического поля.

Электроконтактный нагрев обеспечивает быстрое повышение температуры продукта по всему объему до требуемой величины за 15—60 с за счет пропускания через него электрического тока. Способ применяется в пищевой промышленности для прогревания тестовых заготовок при выпечке хлеба и бланшировании мясопродуктов. Продукция, подвергаемая нагреванию, располагается между электрическими контактами. Зазоры между поверхностью продукции и контактов могут вызвать «ожог» поверхности.

Индукционный нагрев применяется в современных индукционных бытовых плитах и на предприятиях общественного питания. Индукционный нагрев токопроводящих материалов, к которым относится большинство металлов для наплитной посуды, возникает при их помещении во внешнее переменное магнитное поле, создаваемое индуктором. Индуктор, установленный под настилом плиты, создает вихревые токи, замыкающиеся в объеме посуды. Продукт обрабатывают в специальной металлической наплитной посуде, которая нагревается практически мгновенно из-за направленного действия электромагнитного поля. При этом потери тепла в окружающую среду сведены до минимума, что сокращает затраты энергии на приготовление блюда по сравнению с обычной электрической плитой на 40 %. В таких тепловых аппаратах настил плиты, изготовляется из керамических материалов и при тепловой обработке остается практически холодным.

Комбинированные способы нагрева пищевых продуктов — это последовательный или параллельный нагрев продукции несколькими из известных способов с целью сокращения времени тепловой обработки, повышения качества конечного продукта и эффективности технологического процесса. Так, комбинированная тепловая обработка продуктов в СВЧ-поле и ИК-лучами позволяет реализовать преимущества обоих способов нагрева.

Классификация тепловых аппаратов и их структура

По технологическому назначению тепловые аппараты делятся на варочные (пищеварочные котлы, пароварочные аппараты, электроварки, кофеварки), жарочно-пекарные (жарочные, пекарные и кондитерские шкафы, сковороды, фритюрницы, грили), многофункциональные (плиты, микроволновые печи, пароконвектоматы), водогрейные (водонагреватели и кипятильники) и аппараты для поддержания готовой пищи в горячем состоянии — аппараты раздаточных линий (мармиты, тепловые витрины и шкафы, термосы, термоконтейнеры).

В зависимости от вида энергоносителя все тепловые аппараты для общественного питания подразделяются на две основные группы: электрические и газовые. Для эксплуатации в «полевых» условиях выпускается огневое оборудование, работающее на твердом топливе — дровах, угле, сланцах и т.д.

В электрических тепловых аппаратах основным элементом является электронагреватель, в котором электрическая энергия преобразуется в тепловую или энергию электромагнитного поля. К основным преимуществам электрической энергии относятся: простота и компактность преобразователей электрической энергии в тепловую, простота и надежность управления электротепловыми аппаратами, возможность оперативного и точного учета расхода электроэнергии, хорошие санитарно-гигиенические условия на производстве, относительно высокий коэффициент полезного действия аппаратов.

В газовых тепловых аппаратах в качестве энергоносителя используется природный, искусственный или сжиженный газ. К преимуществам газовых аппаратов относятся хорошие санитарно-гигиенические показатели, возможность автоматического регулирования теплового режима и высокий коэффициент полезного действия (КПД). К недостаткам стоит отнести способность горючих газов к образованию взрывоопасной смеси с воздухом, что предполагает особые условия эксплуатации.

По способу обогрева различают контактные тепловые аппараты и аппараты, представляющие собой поверхностные теплообменники с непосредственным и косвенным обогревом.

Тепловые аппараты, в которых продукт обрабатывается на греющей поверхности, называют кондуктивными. Жарочные поверхности и грили, работающие по такому принципу, называют контактными.

По структуре рабочего цикла тепловые аппараты, применяющиеся в общественном питании, подразделяются на аппараты периодического и непрерывного действия.

По геометрической форме тепловые аппараты подразделяются на несекционные смодулированные (имеющие различные габариты и цилиндрическую форму, что не позволяет устанавливать такое оборудование в линию с другими аппаратами без промежутков) и секционные модулированные прямоугольной формы, в основу конструкции которых положен единый размер — модуль (такое оборудование разрабатывают для установки в линию, где определяющим размером является глубина).

Все тепловые аппараты независимо от технологического назначения и конструктивного решения состоят из следующих частей: рабочей камеры (поверхности), теплогенерирующего устройства, корпуса аппарата, теплоизоляции, кожуха, основания, контрольно-измерительных приборов, приборов автоматического регулирования и арматуры.

Рабочая камера предназначена для тепловой обработки пищевых продуктов. Ее форма и размеры зависят от технологического назначения аппарата (резервуар пищеварочного котла, ванна фритюрницы, камера пароконвектомата, греющая поверхность контактного гриля или сковороды). Она может быть подвижной и неподвижной.

Теплоизоляция снижает потери теплоты аппаратом в окружающую среду и выполняется в виде слоев из специальных материалов на наружной поверхности рабочей камеры.

Кожух используется для защиты изоляции от воздействий влаги воздуха и разрушения и придает аппарату эстетичный внешний вид. Основание служит для монтажа корпуса аппарата и выполняется чаще всего в виде отливки из чугуна, дюралюминия или пластмассы различной формы.

Контрольно-измерительные приборы и приборы автоматического регулирования, а также арматура служат для включения, выключения, контроля над работой аппарата, регулирования теплового режима и безопасной эксплуатации аппаратов.


Дата добавления: 2021-06-02; просмотров: 67; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!