Основные методы биотехнологии.



Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора

Признак Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Методы современной селекции.

Основными методами селекции являются отбор, гибридизация (с использованием гетерозиса и цитоплазматической мужской стерильности), полиплоидия и мутагенез.

Отбор и его творческая роль. В основе селекционного процесса лежит искусственный отбор. В сочетании с генетическими методами он позволяет создавать сорта, породы и штаммы с заранее определенными признаками и свойствами. В селекции различают два основных типа отбора: массовый и индивидуальный.

Массовый отбор — это выделение группы особей по внешним, фенотипическим признакам без проверки их генотипа. Например, при массовом, или стихийном, отборе из всей популяции кур той или иной породы в хозяйствах оставляют для размножения птиц с яйценоскостью 200—250 яиц, живой массой не менее 1,5 кг, определенной окраски, не проявляющих инстинкты высиживания и т. д. Все остальные куры выбраковываются. При этом потомство каждой курицы и петуха оценивается только по фенотипу. Следовательно, массовый отбор может дать хорошие результаты только при высоком коэффициенте наследуемости ценных признаков, избранных селекционером.

Массовый отбор наиболее эффективен в отношении качественных признаков, контролируемых одним или несколькими генами. Вместе с тем он редко бывает успешным по полигенным признакам с низким коэффициентом наследования. В этом случае необходимо применять индивидуальный, или методический, отбор.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения или животного в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с высокими показателями. В результате появляется возможность оценивать наследственные качества отдельных особей, т. е. способность передавать свойства потомству.

Значение индивидуального отбора особенно велико в тех отраслях сельскохозяйственного производства, где имеется возможность получения от одного организма большого количества потомков. Так, используя искусственное осеменение, от одного быка можно получить до 35000 телят с помощью глубокого замораживания семени, сохраняющегося долгие годы. Поэтому уже теперь во многих странах мира существуют банки спермы животных с ценными генотипами.

Отбор в селекции отличается наибольшей эффективностью в том случае, если он сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции. Все разнообразие типов скрещиваний сводится к инбридингу и аутбридингу. Инбридинг — это близкородственное (внутрипородное или внутрисортовое), а аутбридинг — неродственное (межпородное или межсортовое) скрещивание.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец — дочь, мать — сын, двоюродные братья — сестры и т. д.). Этот тип скрещивания применяют в тех случаях, когда желают перевести большинство генов породы в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности.

Вместе с тем при инбридинге часто наблюдается ослабление животных, их постепенное вырождение, обусловленное гомозиготизацией рецессивных аллелей. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственные скрещивания используют при инбридинге. Для избежания этого явления необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

У растений чистые линии также обладают пониженной жизнеспособностью, что, вероятно, связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые в основном являются вредными.

Чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то обычно наблюдается эффект гетерозиса.

Неродственное скрещивание между особями одной породы или между особями разных пород (кроссбридинг) животных позволяет поддерживать свойства или улучшать их в ряду следующих поколений гибридов. Аутбридинг повышает уровень гетерозиготности потомства и гетерогенности популяции.

Полипюидия и отдаленная гибридизация. При создании новых сортов растений селекционерами широко используется метод автополиплодии, который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом остаются неповрежденными другие такие же. Полиплоидные особи жизнеспособнее диплоидных.

Около 80 % современных культурных растений являются полиплоидами. Среди них хлебные злаки, овощные и плодово-ягодные культуры, цитрусовые, технические, лекарственные и декоративные растения, которые гораздо более урожайны, чем исходные диплоидные сорта. Так, триплоидная сахарная свекла отличается от обычной не только большей урожайностью вегетативной массы и более крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Однако триплоиды стерильны, поэтому необходимо каждый раз получать гибридные семена от скрещивания диплоидной и тетраплоидной форм. Успешному решению этой проблемы способствовало открытие мужской стерильности свеклы. Стерильность триплоидных гибридов может иметь положительное значение при получении бессемянных плодов, например винограда и арбуза.

Ценные результаты дает использование в селекции явления аллополиплоидии, основой которого служит метод отдаленной гибридизации, т. е. скрещивания организмов, относящихся к разным видам и даже родам. Например, получены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале. Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н. В. Цициным получены пшенично-пырейные гибриды, обладающие высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать удвоение числа хромосом (полиплоидию) у отдаленных гибридов.

Г. Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2п « 18). Соответственно их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы капусты и редьки в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально. В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза; хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу этот новый растительный организм совмещал признаки редьки и капусты, например в строении стручка.

Получение экспериментальным путем полиплоидных животных представляет большую трудность, поэтому такие формы животных — редкость. Так, советскому ученому генетику Б. JI. Астаурову путем межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда. На сегодняшний день есть уже полиплоидные рыбы, птицы (например, куры), однако внедрение полиплоидных пород животных в практику сельского хозяйства — дело будущего.

Спонтанный и индуцированный мутагенез. Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалкалоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту. Люпин, содержащий алкалоиды, для этой цели непригоден, поскольку животные его не едят.

Большое число мутантов известно у плодовых культур, которые используются как новые сорта или в гибридизации с другими формами. Один из наиболее известных спонтанных мутантов кукурузы opaque, отличающийся высоким содержанием аминокислоты лизина в зерне, используется для создания так называемых высоколизиновых гибридов кукурузы.

В последние десятилетия во многих странах мира развернуты работы по получению индуцированных мутантов. Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке. Кроме того, короткая и прочная соломина позволяет вести дальнейшую селекцию на увеличение размера колоса и массы семян без опасения, что повышение урожая зерна приведет к полеганию растений.

Особенно успешно индуцированный мутагенез применяют в селекции микроорганизмов.

Биотехнология — это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других ценных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород — самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Основные методы биотехнологии.

Современная биотехнология – это наука о генно – инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения.

Одними из самых важных методом современной биотехнологии являются клеточная и генная инженерия, а также клонирование.

Генная и клеточная инженерия являются важнейшими методами, лежащими в основе современной биотехнологии и направлены на конструирование новых, не существующих в природе сочетаний генов.

1. Клеточная инженерия – это отрасль биотехнологии, в которой применяют методы выделения клеток из организма и переноса их на искусственные питательные среды, где эти клетки продолжают жить и размножаться. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

2. Генная инженерия — искусственное, целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами. Основной метод генной инженерии — выделение необходимых генов, их клонирование и введение в новую генетическую среду. В конце 90-х годов XX века США вплотную подошли к получению животных методом клонирования клеток эмбрионов, хотя здесь еще нужны дальнейшие серьезные исследования.

В конце XX века генная инженерия широко начала использоваться в сельском хозяйстве, с целью получения генно – модифицированных растений и животных. Ученые сейчас создают растения, которые скоро появятся на рынке: растения – вакцины, растения – биореакторы для призводства промышленных продуктов, растения – фабрики лекарств и т. д. Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого.

Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определенным целевым геном. Например, трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, который препятствует кровотечению у больных, страдающих гемофилией.

Биотехнология позволяет и то, что не под силу природе – перемещение генов между растениями, животными и микроорганизмами. Это открывает огромные возможности для улучшения качества урожая.

Таким образом, решающую роль в процессе биологизации сельского хозяйства может и должна сыграть биотехнология. Сегодня можно и нужно говорить о биологизации техники, промышленного производства и энергетики. Особенно большие надежды связывают с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии. К 2021 году планируется увеличивать выработку электроэнергии и тепловой энергии при помощи биотехнологии на 7% ежегодно, а использование биотоплива - на 10% каждый год. Важным и перспективным направлением биотехнологии является разработка способов получения экологически чистой энергии.

3. Еще один метод современной биотехнологии - клонирование. Благодаря этому методу мы получаем идентичные организмы путем бесполого размножения.

Клонирование использовали много лет для выращивания растений. Животное клонирование было предметом изучения для ученых многие годы, но получало мало внимания до 1997, пока не было клонировано первое млекопитающее - овечка Долли. К клонированию Долли подошли более тщательно. В 277 (!) яйцеклеток были перенесены ядра, принадлежащие шестилетней овце - донору. В результате образовалось всего 29 эмбрионов и только один выжил. Пастух, принимавший роды, попросил назвать клон Долли, в честь его любимой певицы Долли Паркер. Произошло это в июне 1996 г

Овечка - копия старела намного быстрее, чем обычная. На этом старались не акцентировать внимания, но объяснять все же пришлось. Одна из причин крылась в том, что клетки были изначально запрограммированы на ограниченное количество делений и соответственно ограниченную продолжительность их жизни. Во-вторых, она была больна артритом, что многие были склонны связывать с прорехами в клонировании. В целом Долли прожила шесть лет, совсем не долго и не счастливо. ( В среднем овцы живут по 14-15 лет). Конец генетическому символу XX века пришел, когда Долли заболела тяжелым заболеванием легких. Выхода не было, 14 февраля 2003 г. ее усыпили.

4. Клонирование уже подарило нам биотехнологических овец, собак, лошадей, продукты питания, лекарства. Можно только добавить, что в конце этого списка уже давно скромно стоит…человек.

Профессор Уилмат, являющийся «Отцом» овечки Долли, признал, что созданные с помощью клонирования существа в 80 % случаев имеют серьезные отклонения в здоровье, и заявил о недопустимости воссоздания человека существующими методами клонирования.

Впервые об успешном создании человеческого клона заявили английские ученые в 2005 году. Исследователи взяли яйцеклетки 11 женщин, удалили из них ядро и пересадили внутрь ядра эмбриональных стволовых клеток.

Клонирование совершенствуется каждый день, и к 2011 году появились потенциально-новые технологии – они более совершенны, в некоторых случаях не связаны с разрушением эмбриона. Однако позиция стран о клонировании слишком разнятся. Некоторые верят, что, создавая эмбрион, вы порождаете личность, другие уверены, что речь идет о скоплении клеток.

Вот уже много лет ученые пытаются разгадать причину разнообразных поломок организмов - клонов. Чаще всего, у клонов слабо работает иммунная система, поэтому организм не справляется с простыми вирусами и бактериями. В результате многочисленные осложнения приводят клон к преждевременной смерти. Для того, чтобы клон жил так, как живет обычный человек, нужно все - таки определить, какие гены в геноме человека за что отвечают и как работают. Учитывая, что в организме человека 25 000 генов, работы хватит на всех. Будет ли когда-нибудь клонирован человек и если да, то каким способом?

Прогресс не остановить, если и есть какая-то технология, то всегда найдутся и умельцы, которые будут это делать. Если говорить о способах, то самым реальным кажется такой фантастический на сегодняшний день метод, как синтез необходимой ДНК химическим путем. Сейчас это делают для микроорганизмов, а когда-нибудь научатся делать для больших и сложных.

5. Сегодня невозможно представить себе диагностику ряда заболеваний без достижений биотехнологии. Одно из последних – метод биосенсоров, которые « отлавливают» связанные с болезнями молекулы и подают сигналы на датчики, что часто используется в «скорой помощи» (например, определение глюкозы в крови больных сахарным диабетом).

Ну, а самой передовой технологией в диагностике ныне считают микрочипы. Их применяют для ранней диагностики инфекционных, онко - и генетических заболеваний, аллергенов, а также при исследовании новых лекарств. В России уже разработаны биочипы для выявления туберкулеза, оспы, гриппа, гепатита, герпеса – эти тест – системы позволяют сократить время диагностики с 6-8 недель до 1 дня.

Одним из самых перспективных направлений в биомедицинской науке ученые называют генотерапию – воздействие на болезнь с помощью генов, переносимых в клетки организма больного.

Методы генетики

Основной метод генетики – гибридологический (скрещивание определенных орагнизмов и анализ их потомства, этот метод использовал Г.Мендель).

 

Гибридологический метод не подходит для человека по морально-этическим соображениям, а так же из-за малого количества детей и позднего полового созревания. Поэтому для изучения генетики человека применяют косвенные методы.

 

1) Генеалогический – изучение родословных. Позволяет определить закономерности наследования признаков, например:

  • если признак проявляется в каждом поколении, то он доминантный (праворукость)
  • если через поколение – рецессивный (голубой цвет глаз)
  • если чаще проявляется у одного пола – это признак, сцепленный с полом (гемофилия, дальтонизм)

 

2) Близнецовый – сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка).

 

Однояйцевые близнецы получаются, когда один зародыш на стадии 30-60 клеток делится на 2 части, и каждая часть вырастает в ребенка. Такие близнецы всегда одного пола, похожи друг на друга очень сильно (потому что у них совершенно одинаковый генотип). Отличия, которые возникают у таких близнецов в течение жизни, связаны с воздействием условий окружающей среды.

 

Разнояйцевые близнецы (не изучаются в близнецовом методе) получаются, когда в половых путях матери одновременно оплодотворяются две яйцеклетки. Такие близнецы могут быть одного или разного пола, похожи друг на друга как обычные братья и сестры.

 

3) Цитогенетический – изучение под микроскопом хромосомного набора – числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни. Например, при синдроме Дауна имеется одна лишняя 21-ая хромосома.

4) Биохимический – изучение химического состава организма. Позволяет узнать, являются ли пациенты гетерозиготами по патологическому гену. Например, гетерозиготы по гену фенилкетонурии не болеют, но в их крови можно обнаружить повышенное содержание фенилаланина.


Дата добавления: 2021-05-18; просмотров: 71; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!