Период открытия основных законов химии



Период алхимии - с древности до XVI в. нашей эры

Первые сведения о химических превращениях люди получили, занимаясь различными ремеслами, когда красили ткани, выплавляли металл, изготавливали стекло. Тогда появились определённые приёмы и рецепты, но химия ещё не была наукой. Уже тогда химия была нужна человечеству в основном для того, чтобы получать от природы все необходимые для жизнедеятельности человека материалы. Основной задачей было получение веществ с необходимыми свойствами.

Химия, как одна из наук, изучающих явления природы, зародилась в Древнем Египте еще до нашей эры, одной из самых технически развитых стран в те времена.

Можно выделить основные типы наивысшего развития алхимии:

· греко-египетский;

· арабский;

· западноевропейский.

В Древнем Египте химия считалась божественной наукой, ее секреты тщательно оберегались жрецами. Несмотря на это, некоторые сведения просачивались за пределы страны и доходили до Европы через Византию.

Увеличивающийся спрос на золото подтолкнул металлургов к поиску способов превращения неблагородных металлов (железа, свинца, меди и других) в золото. Алхимический характер древней металлургии связал ее с астрологией и магией. Каждый металл имел астрологическую связь с соответствующей планетой. Погоня за философским камнем позволила углубить и расширить знания о химических процессах. Получила развитие металлургия, были усовершенствованы процессы очистки золота и серебра. Однако в период правления императора Диоклетиана в Древнем Риме алхимия стала преследоваться.

Значительную роль в запрете алхимии впоследствии сыграло христианство, которое рассматривало ее уже как дьявольское ремесло.

После завоевания арабами Египта в VII в. н. э. алхимия стала развиваться в арабских странах. Самым выдающимся арабским алхимиком был Джабир ибн Хайям, известный в Европе как Гебер. Он описал нашатырный спирт, технологию приготовления свинцовых белил, способ перегонки уксуса для получения уксусной кислоты. Основополагающей идеей Джабира являлась теория образования всех известных тогда семи металлов из смеси ртути и серы как двух основных составляющих. Эта идея предвосхитила деление простых веществ на металлы и неметаллы.

Развитие арабской алхимии шло двумя параллельными путями. Одни алхимики занимались трансмутацией металлов в золото, другие искали эликсир жизни, дававший бессмертие.

Появление алхимии в странах Западной Европы стало возможным благодаря крестовым походам. Тогда европейцы позаимствовали у арабов научно-практические знания, среди которых была алхимия. Европейская алхимия попала под покровительство астрологии и поэтому приобрела характер тайной науки. Несомненной заслугой европейской алхимии было изучение и получение минеральных кислот, солей, спирта, фосфора. Алхимиками была создана химическая аппаратура; разработаны различные химические операции: нагревание на прямом огне, водяной бане, прокаливание, перегонка, возгонка, выпаривание, фильтрование, кристаллизация и др. Таким образом, были подготовлены соответствующие условия для развития химической науки.

Но несмотря на обширные знания, полученные в результате экспериментов, теоретические воззрения алхимиков отставали на несколько веков. Как теорию алхимики использовали учение Аристотеля (384–322 гг. до н. э.) о четырех принципах природы (холод, тепло, сухость и влажность) и четырех элементах (земля, огонь, воздух и вода), впоследствии добавив к ним растворимость (соль), горючесть (серу) и металличность (ртуть).

Таким образом, исторически алхимия сложилась как мистическое знание, направленное на поиски философского камня, превращающего металлы в золото и серебро и др. В течение своей многовековой истории алхимия решала многие практические задачи, связанные с получением веществ, и заложила фундамент для создания научной химии.

Период зарождения научной химии

Этот период продолжался в течение XVI–XVIII веков.

Возникновение и развитие периода связано с учениями Парацельса (1493–1541 гг.) и Агриколы (1494–1555 гг.). Парацельс утверждал, что основной задачей химии является изготовление лекарств, а не золота и серебра. Парацельс имел большой успех, предложив лечить некоторые болезни, используя простые неорганические соединения вместо органических экстрактов. Агрикола же изучал горное дело и металлургию. Его труд «О металлах» более 200 лет являлся учебником по горному делу.

Период зарождения научной химии охватывает три столетия: с XVI по XIX вв. Условиями становления химии как науки были:

- обновление европейской культуры;

- потребность в новых видах промышленного производства;

- открытие Нового Света;

- расширение торговых отношений.

Отделившись от старой алхимии, химия приобрела большую свободу исследования и утвердилась как единая независимая наука.

В XVI в. на смену алхимии пришло новое направление, которое занималось приготовлением лекарств. Это направление получило название ятрохимии. Основателем учения был швейцарский ученый Теофраст Бомбаст фон Гогенгейм, известный в науке под именем Парацельс.

Ятрохимия стремилась соединить медицину с химией, переоценивая при этом роль химических превращений в организме и приписывая определенным химическим соединениям способность устранять в организме нарушения равновесия. Парацельс свято верил, что если человеческое тело состоит из особых веществ, то происходящие в них изменения должны вызывать болезни, которые могут быть излечены путем применения лекарств, восстанавливающих нормальное химическое равновесие.

В сохранении здоровья человека Парацельс придавал большое значение химии, так как исходил из наблюдения, что медицина покоится на четырех опорах, а именно на философии, астрологии, химии и добродетели. Химия должна развиваться в согласии с медициной, потому что этот союз приведет к прогрессу обеих наук.

Ятрохимия принесла значительную пользу химии, так как способствовала освобождению ее от влияния алхимии и расширила знания о жизненно важных соединениях, оказав тем самым благотворное влияние и на фармацию. Но одновременно ятрохимия была и помехой для развития химии, потому что сужала поле ее исследований. По этой причине в XVII–XVIII вв. ряд исследователей отказались от принципов ятрохимии и избрали иной путь своих исследований, внедряя химию в жизнь и ставя ее на службу человеку.

Именно эти исследователи своими открытиями способствовали созданию первых научных химических теорий.

В XVII веке теория алхимии уже не отвечала требованиям практики. В 1661 г. Бойль выступил против господствующих в химии представлений и подверг жесточайшей критике теорию алхимиков. Он впервые определил центральный объект исследования химии - химический элемент. Бойль считал, что элемент – это предел разложения вещества на составные части. Разлагая природные вещества на их составные, исследователи сделали много важных наблюдений, открыли новые элементы и соединения. Химики стали изучать, что из чего состоит.

В XVII столетии, в век бурного развития механики, в связи с изобретением паровой машины, возник интерес химии к процессу горения.

В конце XVII – начале XVIII веков появляется теория немецкого химика Э.Г. Шталя, объясняющая явления горения, окисления и восстановления металлов. Но эта теория была признана ошибочной в середине XVIII века французским физиком Лавуазье, установившим роль кислорода в этих процессах.  

Итогом этих исследований стала теория флогистона, основоположником которой был немецкий химик и врач Георг Шталь.

Теория Флогистона

Шталь ввел понятие «флогистон» получившее большое распространение. Его теория объединила многочисленные сведения о горении и обжигании. Теория флогистона основана на убеждении, что все горючие вещества богаты особым горючим веществом - флогистоном и чем больше флогистона содержит данное тело, тем более оно способно к горению. То, что остается после процесса горения, флогистона не содержит и потому гореть не может. Шталь утверждал, что расплавление металлов подобно горению дерева, и тоже содержат флогистон, но, теряя его, превращаются в известь, ржавчину или окалину. Однако если к этим остаткам опять добавить флогистон, то вновь можно получить металлы. При нагревании этих веществ с углем металл «возрождается».

Такое понимание процесса плавления позволило дать приемлемое объяснение и процессу превращение руд в металлы - первому теоретическому открытию в области химии.

Однако, что большинство горючих веществ (дерево, бумага, жир) теория флогистона Шталя на первых порах встретила резкую критику, но при этом быстро начала завоевывать популярность и во второй половине XVII в. была принята химиками повсеместно, так как позволила дать четкие ответы на многие вопросы. Однако один вопрос ни Шталь, ни его последователи разреши при горении в значительной степени исчезали. Оставшиеся зола и сажа были намного легче, чем исходное вещество. Но химикам XVIII в. эта проблема не казалась важной, они еще не сознавали важность точных измерений, и изменением в весе они пренебрегали.

За время почти столетнего господства теории флогистона были открыты многие газы, изучены различные металлы, оксиды, соли. Но противоречивость этой теории тормозила дальнейшее развитие химии.

К концу XVIII века в химии был накоплен большой объем экспериментальных данных, которые необходимо было систематизировать в рамках единой теории. Создателем такой теории стал французский химик Антуан-Лоран Лавуазье.

С самого начала своей деятельности на поприще химии Лавуазье понял важность точного измерения веществ, участвующих в химических процессах. Применение точных измерений при изучении химических реакций позволило ему доказать несостоятельность старых теорий, мешавших развитию химии.

Вопрос о природе процесса горения интересовал всех химиков XVIII в., и Лавуазье также был заинтересован. Его многочисленные опыты по нагреванию веществ в закрытых сосудах позволили установить, что независимо от характера химических процессов и их продуктов, общий вес всех участвующих в реакции веществ остается без изменений.

Это позволило ему выдвинуть новую теорию образования металлов и руд. Согласно этой теории, в руде металл соединен с газом. Когда руду нагревают на древесном угле, уголь абсорбирует газ из руды и при этом образуется углекислый газ и металл.

Таким образом, в отличие от Шталя, который считал, что плавка металла включает переход флогистона из древесного угля в руду, Лавуазье представляет себе этот процесс как переход газа из руды в уголь. Идея Лавуазье позволяла объяснить причины изменения веса веществ в результате горения.

Обдумывая результаты проведенных им опытов, Лавуазье пришел к выводу, что масса никогда не создается и не уничтожается, а переходит от одного вещества к другому. Этот вывод, известный как закон сохранения массы, стал основой для всего процесса развития химии XIX века.

Однако сам Лавуазье был неудовлетворен полученными результатами, так как не понимал, почему при соединении воздуха с металлом образовывалась окалина, а при соединении с деревом - газы, и почему при этих взаимодействиях участвовал не весь воздух, а только примерно пятая часть его?

Вновь в результате многочисленных опытов и экспериментов Лавуазье в результате многочисленных опытов и экспериментов пришел к выводу, что воздух является не простым веществом, а смесью двух газов. Одну пятую часть воздуха, по мнению Лавуазье, составляет «дефлогистированный воздух», который соединяется с горящими и ржавеющими предметами, переходит из руд в древесный уголь и необходим для жизни. Лавуазье назвал этот газ кислородом, то есть порождающим кислоты, так как ошибочно полагал, что кислород - компонент всех кислот.

Второй газ, составляющий четыре пятых воздуха («флогистированный воздух») был признан совершенно самостоятельным веществом. Этот газ не поддерживал горения, и его Лавуазье назвал азотом - безжизненным.

Важную роль в исследованиях Лавуазье сыграли результаты опытов английского физика Кавендиша, который доказал, что образующиеся при горении газы конденсируются в жидкость, которая, как показали анализы, является всего-навсего водой.

Важность этого открытия была огромной, так как выяснилось, что вода - не простое вещество, а продукт соединения двух газов.

Лавуазье назвал выделяющийся при горении газ водородом («образующим воду») и отметил, что водород горит, соединяясь с кислородом, и, следовательно, вода является соединением водорода и кислорода.

Новые теории Лавуазье повлекли за собой полную рационализацию химии. Было окончательно покончено со всеми таинственными элементами. С того времени химики стали интересоваться только теми веществами, которые можно было взвесить или измерить каким-либо другим способом.

 

Период открытия основных законов химии

C конца XVIII до середины XIX века был открыт целый ряд стехиометрических законов, устанавливающих количественные соотношения (массовые и объёмные) между реагирующими веществами и продуктами реакции. Закон Авогадро, законы сохранения массы, эквивалентов, постоянства состава, объёмных отношений, кратных отношений – это законы, лежащие в основе стехиометрии. Эти законы позволили создать правила составления химических уравнений и формул. Именно после экспериментального подтверждения этих законов химия сформировалась как наука. Утвердилось атомно-молекулярное представление о строении вещества, подтверждённое теорией строения химических соединений, созданной А. М. Бутлеровым. Д. М. Менделеевым был открыт периодический закон. 

Проблема химического состава веществ была главной в развитии химии вплоть до 30–40 гг. прошлого века. В это время мануфактурное производство сменилось машинным, а для этого была необходима широкая сырьевая база. В промышленном производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. В производстве стали участвовать вещества с различными (часто противоположными) качествами, состоящие лишь из нескольких химических элементов органического происхождения: углерод, водород, кислород, сера, фосфор. Объяснение этому широкому разнообразию органических соединений, возникших на базе ограниченного числа химических элементов, ученые стали искать не только в составе, но и в структуре соединения этих элементов.

Кроме того, многочисленные лабораторные эксперименты и опыты убедительно доказывали, что свойства полученных в результате химических реакций веществ зависят не только от элементов, но и от взаимосвязи и взаимодействия элементов в процессе реакции. Поэтому химики стали все больше обращаться к проблеме структуры вещества и взаимодействию составных элементов вещества.

Первым ученым, который добился успехов в новом направлении развития химии, стал английский химик Джон Дальтон, который вошел в историю как первооткрыватель закона кратных отношений и создатель основ атомной теории. Все свои теоретические выводы он получил на основе сделанного им самим открытия, что два элемента могут соединяться друг с другом в разных соотношениях, но при этом каждая новая комбинация элементов представляет собой новое соединение.

Подобно древним атомистам, Дальтон исходил из положения о корпускулярном строении материи, но, основываясь на сформулированном Лавуазье понятии химического элемента, полагал, что все атомы каждого отдельного элемента одинаковы и характеризуются тем, что обладают определенным весом, который он назвал атомным весом. Таким образом, каждый элемент обладает своим атомным весом, но этот вес относителен, так как абсолютный вес атомов определить невозможно. В качестве условной единицы атомного веса элементов Дальтон принимает атомный вес самого легкого из всех элементов - водорода, и сопоставляет с ним вес других элементов. Для экспериментального подтверждения этой идеи необходимо, чтобы элемент соединился с водородом, образуя определенное соединение. Если этого не происходит, то необходимо, чтобы данный элемент соединялся с другим элементом, о котором известно, что он способен соединяться с водородом. Зная вес этого другого элемента относительно водорода, можно всегда найти отношение веса данного элемента к принятому за единицу веса водорода.

Рассуждая таким образом, Дальтон составил первую таблицу атомных весов. Эта была самой важной работой Дальтона, но в ряде аспектов она оказалась ошибочной. Основное его заблуждение состояло в убеждении, что при образовании молекулы атомы одного элемента соединяются с атомами другого элемента попарно. Хотя уже в то время было накоплено достаточно данных, свидетельствующих о том, что подобное сочетание атомов «один к одному» не является общим правилом.

Для того чтобы атомная теория Дальтона могла получить свой научный статус, надо было объединить ее с молекулярной теорией, которая предполагала существование частиц (молекул), образованных из двух или более атомов и способных в химических реакциях расщепляться на составные атомы.

Поворотный этап в развитии химической атомистики связан с именем шведского химика Йенса Якоба Берцелиуса, который вслед за Дальтоном внес особенно большой вклад в создание атомной теории.

Когда Дальтон предложил свою атомную теорию, молодой шведский химик Берцелиус, руководимый стремлением найти закон образования химических соединений, тщательно изучил вопрос об их составе. Проведя множество анализов, он представил столько доказательств, подтверждающих закон постоянства состава, что химики были вынуждены признать справедливость этого закона и принять атомистическую теорию, которая вытекала из закона постоянства состава.

После этого Берцелиус обратился к проблеме определения атомных весов элементов, разрабатывая более сложные и точные методы экспериментов чем те, которые были доступны Дальтону. В результате длительной и тщательной аналитической работы Берцелиус пришел к выводу, что в солях существуют простые и постоянные отношения между атомами кислорода основания и атомами кислорода кислоты. Этого правила он постоянно придерживался при изучении атомной проблемы.

На основании своих исследований и расчетов в 1826 г. Берцелиус опубликовал первую таблицу атомных весов, отличающихся высокой точностью, причем атомные веса были соотнесены им с кислородом, атомный вес которого был принят за сто. Приведенные в этой таблице величины в основном совпадают (за исключением атомных весов двух-трех элементов) с принятыми в настоящее время. Существенное различие между таблицами Берцелиуса и Дальтона состоит в том, что величины, полученные Берцелиусом, в своем большинстве не были целыми числами. Эти расчеты потом были подтверждены и уточнены другими учеными.

С работами Берцелиуса по атомистике тесно связано введение в употребление символов, предложенных им в 1814 г. для обозначения не только элементов, но и химических реакций. Все символы, формулы соединений и химические уравнения следует вести от Берцелиуса. Его система химической символики весьма содействовала развитию химии. В качестве символа элемента принимается первая буква его латинского или греческого названия. В тех случаях, когда названия двух или более элементов начинаются с одних и тех же букв, к ним добавляется вторая буква названия. Так появились химические символы элементов, которые используются во всем мире и поныне. Еще в начале своей научной деятельности он предложил все вещества разделить на органические и неорганические.

Со времени открытия огня человек стал делить все вещества на две группы: горючие и негорючие. К горючим относились, в частности, дерево и жир, которые в основном служили топливом. Дерево - продукт растительного происхождения, а жир или масло - продукты как животного, так и растительного происхождения. В отличие от них вода, песок, горные породы и большинство других веществ минерального происхождения не горят и даже гасят огонь. Таким образом, между способностью вещества к горению и его принадлежностью к живому или неживому миру просматривалась определенная связь.

Накопленные в течение восемнадцатого столетия знания позволили химикам сделать вывод, что судить о природе веществ, исходя только из их горючести или негорючести, ошибочно. Вещества неживой природы могли выдерживать жесткую обработку, и именно их Берцелиус назвал неорганическими. А вещества живой или некогда живой материи такой обработки не выдерживали, и их он назвал органическими.

Во многих своих проявлениях эти две группы веществ вели себя принципиально различным образом. Так, химиков не переставало удивлять, что органические вещества при нагревании или каком-либо другом воздействии легко превращаются в неорганические (возможность обратного перехода была установлена гораздо позже).

Определенное влияние на развитие химии данного периода оказал «витализм» - учение, рассматривающее жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил. Сторонники витализма утверждали, что для превращения неорганических веществ в органические требуется особое воздействие («жизненная сила»), которое проявляется только внутри живой ткани. По этой причине неорганические соединения, например, воду, можно было найти повсюду, тогда как органические соединения, образующиеся под воздействием жизненной силы, можно найти только в живых тканях.

История химии свидетельствует, что до середины XIX в. ее развитие происходило беспорядочно и хаотически. Химики открывали все новые и новые химические элементы, описывали их свойства, способность вступать в различные реакции и благодаря этому постепенно накопили огромный эмпирический материал, который необходимо было привести в определенную систему.

Логическим завершением всего многовекового процесса возникновения и развития химии стал первый международный химический конгресс, который состоялся в сентябре 1860 г. На конгрессе присутствовали самые знаменитые химики того времени. На нем были сформулированы и приняты основополагающие принципы, теории и законы химии, которые не вызывали никаких сомнений у участников. Тем самым химия заявила о себе де-факто как о самостоятельной науке.

Однако гораздо большее значение имели научные результаты и последствия конгресса. К 60-м годам прошлого столетия в химии еще сохранилась путаница с атомными и молекулярными весами, что не позволяло точно решить вопрос о системе элементов и отрицательно сказывалось на развитии самой химии. Разногласия по поводу относительных атомных весов, приписываемых атомам различных элементов привели к разногласиям в отношении числа атомов отдельных элементов, входящих в данную молекулу. Ученые неоднократно предпринимали попытки придать этим проблемам системный вид, но их предложения были весьма несовершенными, потому что в качестве системообразующих факторов брались чаще всего несущественные, второстепенные и даже чисто внешние признаки элементов.

Инициатором обсуждения и решения данной проблемы стал итальянский химик С. Канниццаро, который предложил разграничить понятия «атомный вес», «молекулярный вес» и «эквивалентный вес». На конгрессе Канниццаро произнес яркую речь, и ему удалось убедить участников в правильности предлагаемых им идей. С этого момента в вопрос об атомных весах была внесена ясность, и было по достоинству оценено значение таблицы атомных весов, составленной Берцелиусом. Кроме того, решения конгресса, по сути дела, подготовили условия для создания периодической системы элементов.

Системный подход в химии

Основоположником системного подхода в химии стал русский химик Д. И. Менделеев. После посещения конгресса Менделеев приступил к изучению элементов и обратил особое внимание на периодичность изменения валентности у элементов, расположенных в порядке возрастания атомных весов.

Менделеев считал, что любое точное знание составляет систему, в основе которой должен быть единый систематизирующий фактор. В качестве такого фактора он выбрал атомный вес, полагая, что последний является главной характеристикой всех химических элементов.

Основываясь на увеличении и уменьшении валентности элементов в соответствии с их атомным весом, Менделеев разделил элементы на периоды (отсюда название «периодическая система элементов»). Такая периодическая система элементов была яснее и нагляднее, чем график. Благодаря форме таблицы мировое сообщество ученых отдало приоритет открытия периодической системы именно Менделееву, а не другим ученым, которые к тому времени также систематизировали элементы, но в других формах.

Во времена Менделеева было известно всего 62 химических элемента. Поэтому в таблице оказались пустые клетки (пробелы). Наличие этих пробелов он объяснил не несовершенством самой таблицы, а тем, что соответствующие элементы пока еще не открыты. Впоследствии эти элементы были открыты химиками и их свойства оказались именно такими, как предсказал Менделеев.

Хотя классификация Менделеева была выдающимся научным достижением, получила широкое распространение и стала подлинно научной системой химических знаний, она не была идеальной и совершенной. Первый недостаток таблицы заключался в том, что водород как одновалентный элемент был помещен в начале I группы. Однако химики тогда еще не пришли к единому мнению относительно того, следует ли помещать водород в эту группу, так как водород не похож в химическом отношении на другие элементы этой группы. Этот и ряд других недостатков таблицы позволил нескольким ученым внести в нее усовершенствования, последнее из которых было сделано после открытия явления радиоактивности.

По мере совершенствования периодическая система элементов завоевывала у химиков всеобщий авторитет, так как объясняла многие факты, а самое главное, указывала на существование глубокой зависимости между различными элементами, выводила свойства химических элементов из их порядкового номера в таблице Менделеева.

Значительный вклад в развитие органической химии внёс выдающийся русский химик А. М. Бутлеров. В 1861 году им была создана теория строения органических соединений, которая позволила привести в систему знания об огромном числе органических соединений, и без которой немыслимы были бы современные успехи в создании новых полимерных материалов.


Дата добавления: 2021-05-18; просмотров: 382; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!