Технические сложности мобильной навигации



Мобильные робототехнические системы применяются сегодня в самых разных отраслях. Корпоративные заказчики интересуются многофункциональными промышленными роботами, массовый покупатель активно приобретает интеллектуальные пылесосы и роботы-собачки, службы безопасности и спасения рассчитывают на автономные устройства, способные без устали выполнять задачи слежения и поиска. При этом все подобные устройства в идеале должны уверенно перемещаться в незнакомой и непредсказуемой обстановке реального мира.

Устройство автоматической калибровки антенны для

роботов, создаваемых германскими Центром авиации

и космонавтики и Министерством образования, науки,

исследований и технологии

Пока основной проблемой всех ныне существующих мобильных аппаратов, перемещающихся самостоятельно, без управления со стороны человека, остается навигация. Для успешной навигации в пространстве бортовая система робота должна уметь строить маршрут, управлять параметрами движения (задавать угол поворота колес и скорость их вращения), правильно интерпретировать сведения оокружающем мире, получаемые от датчиков, и постоянно отслеживать собственные координаты.

Компьютерные системы построения маршрута разработаны достаточно хорошо. Первоначально они создавались для простейших виртуальных сред, и программа, моделирующая действия робота, быстро находила оптимальный путь к цели в двумерных лабиринтах и комнатах, наполненных простыми препятствиями. Когда появились быстрые процессоры, стало возможным формировать траекторию движения уже на сложных трехмерных картах, причем в реальном времени. Интересно, что существенный вклад в это алгоритмическое направление внесли компании-разработчики компьютерных игр, финансирующие соответствующиисследования. В современных играх с каждой из конфликтующих сторон участвует несколько сотен боевых единиц, действующих на случайно сгенерированных трехмерных картах, и каждая единица быстро и достаточно эффективно находит путь к цели. Правда, при этом она, как правило, неявно обладает полной информацией о карте и своем местоположении на ней.

Поэтому в реальных условиях эксплуатации такие алгоритмы малоэффективны. Полноценный робот должен определять собственные координаты и выбирать направление движения только на основании показателей бортовых датчиков, поэтому системы искусственного интеллекта, создаваемые для автономных машин, ориентированы на поддержку непрерывного цикла "опродатчиков - принятие оперативного решения об изменении маршрута". Таких циклов может быть несколько - один ответственен за следование по основному маршруту, другой - за обход препятствий и т. д. Кроме того, на аппаратном уровне каждый цикл может поддерживаться датчиками разных типов и разных принципов действия, формирующих потоки данных разного объема и интенсивности.

В результате робот начинает теряться в сложной обстановке и на длинных маршрутах, когда надо не просто обходить мелкие препятствия и уклоняться от опасностей на относительно прямом пути, а планировать долгосрочные действия на стратегическом уровне и выполнять ряд вспомогательных задач, которые весьма трудоемки сами по себе. Поэтому современные системы навигации объединяюмеханизмы как низкоуровневого управления, так и высокоуровневого планирования. Проблемы, непосредственно связанные с движением на текущем коротком отрезке маршрута, решаются путем простого реагирования на особенности внешней среды, а глобальная система следит за соблюдением общего плана, модифицируя его в случае необходимости, и синхронизирует работу всех подчиненных структур управления.

Технические сложности мобильной навигации

При построении системы навигации роботов возникает немало технических сложностей. Рассмотрим их более подробно.

1. Чтобы двигаться к цели, роботу необходимо сформировать достаточно точный образ окружающего его пространства.

Сегодня это достигается преимущественно использованием лазерных дальномеров и ультразвуковых генераторов (сонаров). Однако лазерный луч поможет получить образ среды только в зоне прямой видимости. Кроме того, на пути луча часто возникают мелкие помехи, вносящие погрешность в такой образ. А ультразвуковые датчики характеризуются большим временем отклика (если робот находится на большом и открытом пространстве), порядка десятых долей секунды, что не позволяет роботу перемещаться быстро. Скорость звука в разных условиях также может "плавать", влияя на точность оценки расстояния, в результате в "голове" робота искажается общая картина окружающей среды. Создание трехмерных карт с помощью лазеров в масштабе реального времени еще более затруднительно и, как минимум, требует существенных вычислительных мощностей, которые пока не удается воплотить в виде компактных бортовых плат. По этим причинам ценность информации, поступающей от бортовых датчиков, невелика. Роботу необходимо перевести ее в формальное и структурированное "словесное" описание мира (задача распознавания), что пока получается плоховато. Наибольший эффект здесь обещают дать системы машинного зрения, но они также еще несовершенны (см. PC Week/RE, N 5/2004, с. 31). Вместе с тем данный недостаток уже преодолен в проектах, где роботы действуют в зданиях и в любой другой предопределенной обстановке.

Перспективной идеей оказалось хранение в памяти машины полной карты местности. Обычно она представляется в геометрическом (очень подробно, но и очень объемно) либо топологическом (компактно, условными обозначениями, нменее подробно) виде. Наилучший результат дают трехмерные карты, однако их хранение и обработка бортовой системой робота затруднены: нужны слишком большие по сегодняшним меркам вычислительные ресурсы. А самое главное, роботу далеко не всегда удается правильно определить свое реальное местонахождение на такой карте.

Ведется множество исследовательских работ по обучению автономных аппаратов методам самостоятельного построения карт местности. Эта область активно финансируется военными, заинтересованными в автоматизации процессов построения карт любой области Земли. Пока эти исследования не имеют серьезных практических воплощений в системах реального времени. Впрочем, препятствие к этому заключается не столько в слабости алгоритмов, сколько в относительно медленных бортовых процессорах.

2. В ходе движения робот должен быстро и точно управлять мотором и положением колес.

Некоторые задачи робототехники в принципе не допускают точного решения (это, например, задача управления крутящим моментом электромотора таким образом, чтобы робот безукоснительно следовал маршруту). В других задачах, связанных с динамикой движения роботов (область теоретической механики), до нахождения ответа еще очень далеко, а поиск приближенных коэффициентов, определяющих параметры движения, требует от бортового устройства постоянного решения систем дифференциальных уравнений. Поэтому сложности здесь как технические, так и теоретические.

3. Робот должен знать свое реальное местонахождение, а оно почти всегда отличается от хранящегося в бортовой системе.

Определение своих координат - фундаментальная задача навигации, ответ на которую интересен не только робототехникам, но и специалистам из множества других областей - прежде всего космической, авиационной и автомобильной.


Дата добавления: 2021-04-15; просмотров: 93; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!