Степени вершин и подсчет числа ребер графа



Теоретический материал к теме “Графы”.

Введение

Графы – замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач. В математике существует целый раздел – теория графов, который изучает графы, их свойства и применение. Мы же обсудим только самые основные понятия, свойства графов и некоторые способы решения задач.

История графов

Родоначальником теории графов принято считать математика Леонарда Эйлера (1707-1783, российский математик, швейцарец по происхождению, академик Петербургской и Берлинской академии наук).

Он предложил изящное решение знаменитой задачи о 7 Кенигсбергских мостах в 1736 году, а также придумал общий метод решения подобных задач.

В дальнейшем над графами работали Кениг (1774-1833), Гамильтон (1805-1865), из современных математиков - К. Берж, О. Оре, А. Зыков.

Термин «граф» впервые ввел в 1936 году венгерский математик Денеш Кениг.

Широкое развитие теория графов получила с 50-х годов 20 века в связи со становлением кибернетики и развитием вычислительной техники.

Понятие графа

Рассмотрим две задачи.

Задача 1. Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам: Земля – Меркурий; Плутон – Венера; Земля – Плутон; Плутон – Меркурий; Меркурий – Вене; Уран – Нептун; Нептун – Сатурн; Сатурн – Юпитер; Юпитер – Марс и Марс – Уран. Можно ли долететь на рейсовых ракетах с Земли до Марса ?

Решение: Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями.

Теперь сразу видно, что долететь с Земли до Марса нельзя.

Задача 2. Доска имеет форму двойного креста, который получается, если из квадрата 4x4 убрать угловые клетки.

Можно ли обойти ее ходом шахматного коня и вернуться на исходную клетку, побывав на всех клетках ровно по одному разу ?

Решение: Занумеруем последовательно клетки доски:

А теперь с помощью рисунка покажем, что такой обход таблицы, как указано в условии, возможен:

Мы рассмотрели две непохожие задачи. Однако решения этих двух задач объединяет общая идея – графическое представление решения. При этом и картинки, нарисованные для каждой задачи, оказались похожими: каждая картинка – это несколько точек, некоторые из которых соединены линиями.

Такие картинки и называются графами. Точки при этом называются вершинами, а линии – ребрами графа. Заметим, что не каждая картинка такого вида будет называться графом. Например. если вас попросят нарисовать в тетради пятиугольник, то такой рисунок графом не будет. Будем называть что рисунок такого вида, как в предыдущих задачах, графом, если есть какая-то конкретная задача для которой такой рисунок построен.

Другое замечание касается вида графа. Попробуйте проверить, что граф для одной и той же задачи можно нарисовать разными способами; и наоборот для разных задач можно нарисовать одинаковые по виду графы. Здесь важно лишь то, какие вершины соединены друг с другом, а какие – нет. Например, граф для задачи 1 можно нарисовать по-другому:

Такие одинаковые, но по-разному нарисованные графы, называются изоморфными.

Степени вершин и подсчет числа ребер графа

Запишем еще одно определение: Степенью вершины графа называется количество выходящих из нее ребер. В связи с этим, вершина, имеющая четную степень, называется четной вершиной, соответственно, вершина, имеющая нечетную степень, называется нечетной вершиной.

С понятием степени вершины связана одна из основных теорем теории графов –теорема о честности числа нечетных вершин. Докажем ее мы немного позднее, а сначала для иллюстрации рассмотрим задачу.

Задача 3. В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединен ровно с пятью другими ?

Решение: Допустим, что такое соединение телефонов возможно. Тогда представим себе граф, в котором вершины обозначают телефоны, а ребра – провода, их соединяющие. Подсчитаем, сколько всего получится проводов. К каждому телефону подключено ровно 5 проводов, т.е. степень каждой вершины нашего графа – 5. Чтобы найти число проводов, надо просуммировать степени всех вершин графа и полученный результат разделить на 2 (т.к. каждый провод имеет два конца, то при суммировании степеней каждый провод будет взят 2 раза). Но тогда количество проводов получится разным . Но это число не целое. Значит наше предположение о том, что можно соединить каждый телефон ровно с пятью другими, оказалось неверным.

Ответ. Соединить телефоны таким образом невозможно.

Домашнее задание:

Задача №1. В деревне 9 домов. Известно, что у Петра соседи Иван и Антон, Максим сосед Ивану и Сергею, Виктор – Диме и Никите, Евгений – сосед Никиты, а больше соседей в этой деревне нет (соседними считаются дворы, у которых есть общий участок забора). Может ли Пётр огородами пробраться ночью к Никите за яблоками?

 

Решение. Ответить на вопрос задачи сразу нелегко. Выпишем имена мальчиков и соединим соседей линиями:

Изображение ситуации, описанной в условии задачи, помогает сделать вывод: Пётр не может огородами пробраться к Никите, так как они не соседи.

Ответ: нет, не может.

 

Задача №2. Аркадий, Борис, Владимир, Григорий и Дмитрий при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано?

 

Решение. Повторим ту же идею: изобразим ситуацию из условия задачи на рисунке. Пусть каждому из пяти молодых людей соответствует определенная точка на плоскости, названная первой буквой его имени, а производимому рукопожатию – отрезок или часть кривой, соединяющая конкретные точки – имена (рисунок справа). Если подсчитать число линий, изображенных на рисунке, то это число и будет равно количеству совершенных рукопожатий между пятью молодыми людьми. Их 10.


Дата добавления: 2021-04-15; просмотров: 101; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!