Количественные показатели термодинамических циклов ПГУ

Парогазовые установки

Основные типы парогазовых установок

    Парогазовые установки с котлами полного горения (ПГУПГ) создают, объединяя серийные газотурбинные агрегаты и паротурбинные установки [12]. Принципиальная тепловая схема конденсационной ПГУПГ представлена на рис.1. При работе в парогазовом режиме выхлопные газы газотурбинного агрегата 1поступают к горелкам парового котла 2, куда подают также топливо с расходом B п . Полученный в котле пар направляют в паровую турбину 4, имеющую систему регенеративного подогрева 5. Уходящие газы котла проходят через газоводяные теплообменники 6, где отдают теплоту конденсату и питательной воде.

Рис.1. Принципиальная тепловая схема ПГУПГ:

1 – газотурбинный агрегат; 2 – паровой котёл; 3 – газовая горелка для сжигания дополнительного газа; 4 – паровая турбина; 5 – система регенеративного подогрева;
6 – газоводяные теплообменники; 7 – вентилятор; 8 – переключающая арматура газовоздухопроводов; 9 – выхлопная труба; К – компрессор; КС – камера сгорания;
ГТ – газовая турбина; Д – деаэратор; КД – конденсатор; КН – конденсатный насос;
ПН – питательный насос; ЭГ – электрогенератор

 

При останове газотурбинного агрегата (ГТА) паротурбинная часть парогазовой установки может работать автономно по паротурбинному циклу. На этом режиме кгорелкам котла подают воздух от дутьевого вентилятора 7. Возможна также автономная работа и газотурбинного агрегата, для чего предусмотрена выхлопная труба 9. При переходе с режима на режим соответствующие переключения выполняют с помощью арматуры газовоздухопроводов 8.

    В суммарной электрической мощности парогазовых установок с котлами полного горения доля мощности газотурбинного агрегата обычно составляет 15—35 %. Температура выхлопных газов современных энергетических ГГУ в большинстве случаев составляет 450—550 °С, а содержание кислорода в них – 14–16 % по объему. Такие параметры выхлопных газов позволяют успешно использовать их в качестве как окислителя при сжигании топлива в котлах, так и теплоносителя, передающего часть теплоты топлива ГТА рабочему телу паротурбинной установки.

Паровые котлы, входящие в состав парогазовых установок рассматриваемого типа, от серийных паровых котлов отличаются наличием газоводяных теплообменников, устанавливаемых вместо ненужных в парогазовом цикле воздухоподогревателей, и увеличенным сечением газового тракта горелок. В ряде случаев незначительно корректируется поверхность нагрева котла.

В составе парогазовых установок с котлами полного горения обычно используют серийные паровые турбины большой мощности с высокими или закритическими начальными параметрами и промежуточным перегревом пара. Основная особенность работы этих турбин в составе парогазовых установок — значительное снижение расхода конденсата и питательной воды через регенеративные подогреватели паровой турбины, что приводит к пропорциональному уменьшению регенеративных отборов пара. Направление значительной части конденсата и питательной воды помимо регенеративных подогревателей турбины в газоводяные теплообменники объясняется необходимостью снижения температуры уходящих газов котла до заданной величины.

Указанное уменьшение регенеративных отборов пара может вызвать значительное снижение мощности паровой турбины и связанное с этим ухудшение экономических показателей установки. Если же вытесненный пар регенеративных отборов направить в часть низкого давления турбины, можно получить дополнительную электрическую мощность. Вместе с тем пропуск дополнительного количества пара, как правило, ограничен прочностными характеристиками турбины. Поэтому номинальная мощность серийной паровой турбины при ее работе в составе парогазовой установки может быть получена либо при наличии значительных запасов прочности в конструкции этой турбины, либо после реконструкции проточной части турбины.

На рис. 2 в Т, S координатах показан идеальный цикл парогазовой установки с котлом полного горения. Цифрами 1, 2, 3,4 обозначен идеальный цикл газотурбинного агрегата, являющийся верхним циклом в комбинированном парогазовом цикле. Подвод теплоты крабочему телу верхнего цикла осуществляется по изобаре 2 — 3, а отвод — по изобаре 4 — 1. При этом часть отводимой из верхнего цикла теплоты передается рабочему телу нижнего цикла. Остальная часть теряется в атмосфере.

 

Рис. 2. Идеальный цикл ПГУПГ

 

Нижний цикл, цикл паротурбинной установки, на рис. 50 показан буква-ми. Подвод теплоты к этому циклу осуществляется по изобаре bсdе, а отвод — по изобаре-изотерме f — а. Отвод теплоты от продуктов сгорания топлива котла осуществляется по изобаре 11 — 5 (4-11 подвод теплоты при сжигании дополнительного количества топлива в паровом котле). Суммарное количество теплоты, подведенное к рабочему телу нижнего цикла, равно площади h а b c d е k. Часть этой теплоты, равная площади а b c d е f в паровой турбине преобразуется в механическую энергию, а остальная теплота теряется с охлаждающей водой конденсатора.

В комбинированном парогазовом цикле удачно сочетаются достоинства двух исходных циклов: высокая средняя температура подвода теплоты, свойственная газотурбинному циклу, и низкая средняя температура отвода теплоты, характерная для паротурбинного цикла. Значительная часть отводимой из верхнего цикла теплоты используется в нижнем цикле. Поскольку к рабочему телу нижнего цикла наряду с теплотой, отводимой из верхнего цикла, подводится и теплота от собственного горячего источника — от продуктов сгорания топлива котла, то цикл парогазовой установки с котлом полного горения является частично бинарным циклом.

Парогазовые установки с высоконапорными парогенераторами (ПГУВ) Принципиальная тепловая схема ПГУВ представлена на рис. 3. В тепловой схеме парогазовых установок этого типа паровой котел расположен в газовоздушном тракте газотурбинного агрегата между компрессором и газовой турбиной. Такой котел совмещает функции камеры сгорания газотурбинного агрегата и парогенерирующего устройства паротурбинной установки. Рабочие процессы в газовоздушном тракте этого котла протекают при повышенном избыточном давлении, что приводит к радикальным изменениям в его конструкции. Поэтому такие котлы называют высоконапорными парогенераторами.

        


Рис. 3. Принципиальная тепловая схема ПГУВ:

1, 2 – высоконапорный парогенератор, совмещённый с камерой сгорания; 3 – подача топлива; 4 – паровая турбина; 5 – система регенеративного подогрева; 6 – газоводяные теплообменники; К – компрессор; ГТ – газовая турбина; Д – деаэратор; КД – конденсатор;
КН – конденсатный насос; ПН – питательный насос; ЭГ – электрогенератор

 

    Сжатый в компрессоре 1 воздух поступает в топку высоконапорного парогенератора (ВПГ), в котором осуществляется сжигание всего топлива парогазовой установки и где расположены испарительные и перегревательные поверхности нагрева. Горение топлива и теплообмен в ВПГ происходят при давлении воздуха за компрессором ГТА, которое в современных установках составляет 1,0 — 2,0 МПа. Осуществление рабочих процессов в ВПГ при высоком давлении продуктов сгорания приводит к их интенсификации и значительному сокращению поверхностей нагрева.

После ВПГ продукты сгорания топлива поступают в газовую турбину. Через газовую турбину ПГУВ проходят продукты сгорания всего топлива парогазовой установки, что при прочих равных условиях обеспечивает повышенную мощность ГТА. После газовой турбины продукты сгорания топлива направляются в газоводяные теплообменники 6, где их температура понижается до требуемого уровня.

Серийные газотурбинные установки, как правило, не могут быть использованы в составе парогазовых установок с высоконапорными парогенераторами. В связи с увеличенным расходом продуктов сгорания топлива через газовую турбину для этих установок либо разрабатывают специальные газотурбинные агрегаты, либо реконструируют серийные. Доля ГТА в суммарной мощности ПГУВ составляет обычно 15 — 30 %. Входящая в состав ПГУВ паротурбинная установка практически ничем не отличается от рассмотренной ранее паротурбинной установки, входящей в состав ПГУПГ.

    На рис. 4 в Т, S - координатах показан идеальный цикл парогазовой установки с высоконапорным парогенератором. Сравнение этого цикла с идеальным циклом парогазовой установки с котлом полного горения показывает, что эти циклы практически одинаковы. Единственное отличие состоит в том, что подвод теплоты к пароводяному рабочему телу в ПГУВ осуществляется по изобаре 3 — 11, соответствующей давлению воздуха за компрессором ГТА.

Рис. 4. Идеальный цикл ПГУВ

Парогазовые установки с котлами-утилизаторами были созданы позже парогазовых установок других типов [12]. Их реализации предшествовало освоение высокотемпературных газовых турбин и котельных труб с устройствами для интенсификации теплообмена. К настоящему времени этот тип парогазовых установок получил наибольшее распространение.

    Принципиальное отличие парогазовых установок с котлами-утилизаторами от парогазовых установок с котлами полного горения заключается в том, что котлы-утилизаторы не рассчитаны на обеспечение автономной работы паротурбинной части установки при останове газотурбинного агрегата.

    Рис. 5. Принципиальная тепловая схема ПГУКУ:

1 – газотурбинный агрегат; 2 – котёл-утилизатор; 3 – секция высокого давления;
4 – секция низкого давления; 5 – паровая турбина; 6 – выхлопная труба;
7 – переключающая арматура; К – компрессор; КС – камера сгорания; ГТ – газовая турбина; Д – деаэратор; КД – конденсатор; КН – конденсатный насос; ПНВ – питательный насос высокого давления; ПНВ – питательный насос низкого давления;
ЦН – циркуляционные насосы; ЭГ – электрогенератор

 

Принципиальная тепловая схема парогазовой установки с котлом-утилизатором представлена на рис. 5. Выхлопные газы газотурбинного агрегата 1 поступают в котел-утилизатор 2. В секции высокого давления 3 этого котла вырабатывается пар для паровой турбины 5. Для более полной утилизации теплоты выхлопных газов ГТА котел-утилизатор имеет секцию низкого давления 4, в которой подогревается конденсат паровой турбины и вырабатывается пар низкого давления для паровой турбины и греющий пар для деаэратора. Автономная работа газотурбинного агрегата и пусковые режимы установки обеспечиваются с помощью выхлопной трубы 6 и отключающей арматуры 7.

Количество котлов-утилизаторов в составе ПГУКУ равно количеству газотурбинных агрегатов. Применяют котлы одного, двух и трех давлений обогреваемой среды. В странах Западной Европы, как правило, применяют котлы-утилизаторы с принудительной циркуляцией среды, в США — с естественной циркуляцией. Параметры пара, получаемого в котлах-утилизаторах первых ПГУ этого типа: приблизительно 3 МПа и 400 °С. Котлы-утилизаторы современных ПГУКУ вырабатывают пар с давлением 11 МПа и температурой 540 °С. На некоторых установках предусмотрен промежуточный перегрев пара. По мере дальнейшего увеличения температуры выхлопных газов ГТА будут повышаться и параметры пара, получаемого в котлах-утилизаторах. Паровые турбины для парогазовых установок с котлами-утилизаторами также разрабатывают специально для этих установок. В составе парогазовой установки, как правило, используют одну паровую турбину. Эта турбина обычно представляет собой простейший одноцилиндровый агрегат с одним потоком пара без регенеративных отборов пара.

 

Рис. 6. Идеальный цикл ПГУКУ

 

На рис. 6 в Т, S - координатах показан идеальный цикл парогазовой установки с котлом-утилизатором. Верхний цикл, цикл газотурбинной установки, обозначен цифрами 1 2 3 4,а нижний цикл, цикл паротурбинной установки, — буквами а b сdе f . Часть отводимой из верхнего цикла теплоты подводится к нижнему циклу. Другая часть этой теплоты теряется в атмосфере. Верхний цикл — единственный источник теплоты для нижнего цикла, поэтому комбинированные циклы парогазовых установок с котлами-утилизаторами являются полностью бинарными.

 

 

Количественные показатели термодинамических циклов ПГУ

Основные расчетные соотношения цикла ГТУ

Температура воздуха после компрессора:

                                                .                                      (98)

Температура газов на выходе из турбины:

                                                .                                      (99)

Степень повышения давления в компрессоре:

                                                   ,                                           (1)

 коэффициент полезного действия идеального цикла:

                                               .                                       (2)

Количество подведенной теплоты в цикле ГТУ:

 

.                                                                                          (3)

Количество отведенной теплоты:

                                                .                                       (4)

Полезная работа цикла:

          (5)

где ε = (k-1)/k.

Производная от полезной работы по степени сжатия, при которой полезная работа максимальна, будет равна

                    .            (6)

Отсюда оптимальная степень сжатия при ограниченной температуре перед газовой турбиной будет равна [13]

                                                  .                                          (7)

На рис. 7 приведены зависимости удельной полезной работы от степени повышения давления в компрессоре, рассчитанная при температурах на входе в газовую турбину равных 1000 и 1100 °С. Оптимальное значение степени повышения давления при температуре 1000 °С составило ~ 15. С увеличением температуры газов перед турбиной возрастает и оптимальное значение степени повышения давления.

Рис. 7. Зависимость полезной работы ГТУ от степени повышения давления

Цифры у кривых – температура газов на входе в турбину

 

Теплота в камере сгорания подводится за счет сжигания природного газа. Сжигание осуществляется с повышенным коэффициентом избытка воздуха, поскольку температура T3 ограничена. Количество природного газа, сожженного в камере, сгорания в расчете на 1 кг рабочего тела определится из следующих соображений. Массовый расход газа через турбину:

                                               .                                       (8)

Суммарное количество теплоты, выделившееся при сжигании газа в турбине с расходом Bг, будет равно .Удельное количество теплоты на 1 кг рабочего тела

                              ,                      (9)

с другой стороны, это количество теплоты . Отсюда находим требуемый избыток воздуха, обеспечивающий допустимую температуру на входе в проточную часть газовой турбины:

                                            .                                  (10)

Таким образом, полезная работа ηг газовой турбины, степень сжатия в компрессоре и коэффициент избытка воздуха оказываются связанными между собой. Чем выше степень сжатия КПД, тем до большей температуры подогревается воздух в компрессоре, тем меньше расход газа в камере сгорания и тем выше коэффициент избытка воздуха на входе в газовую турбину (рис. 8).

 

Рис. 8. Зависимость коэффициента избытка от степени сжатия в компрессоре

 

Существуют объективные показатели, с помощью которых можно осуществить количественную оценку характеристик парогазовых установок. Один из таких показателей - это доля теплоты топлива газотурбинной установки δ. Этот показатель представляет собой отношение количества теплоты, выделенной при сжигании топлива в газотурбинной части установки, к общему количеству теплоты, выделенной в парогазовой установке.

Сжигание топлива в камере сгорания газовой турбины согласно условиям прочности лопаток турбин осуществляется с повышенными значениями коэффициента избытка воздуха αг. В этом случае объем продуктов сгорания практически равен объему воздуха, подаваемого на горение:

                                                 ,                                       (11)

где Bг расход топлива, сжигаемый в газовой турбине; Gг – расход продуктов сгорания, покидающих газовую турбину. При сжигании дополнительного количества топлива в парогенераторе Bпрасход продуктов сгорания почти не изменится и будет связан с суммарным расходом топлива  соотношением

                                                .                                      (12)

    Приравнивая расход продуктов сгорания, получим соотношение между суммарным расходом топлива и расходом топлива на газовую турбину в виде

                                              .                                    (13)

           Совершенно очевидно, что соотношение теплоты, выделенной при сжигании топлива в газотурбинной части установки, к общему количеству теплоты, подведенному к парогазовой установке, также будет пропорционально отношению коэффициентов избытка воздуха:

                                       .                             (14)

Отношение расхода топлива Bп, дополнительно сожженного в парогенераторе, к расходу топлива Bг, сожженного в газовой турбине, выразится соотношением

                                 .                       (13)

В ПКУПГ в паротурбинной части топливо сжигается до полного использования кислорода выхлопных газов газовой турбины, значение αух близко к единице и доля теплоты топлива газотурбинной установки  минимальна. При αух = αг, δ = 1 сжигание топлива в паротурбинной части не производится, что соответствует бинарным ПГУ с котлами-утилизаторами.

Второй показатель, позволяющий осуществлять количественную оценку некоторых характеристик парогазовых циклов, – степень бинарности цикла β. Степень бинарности показывает, какую часть в суммарном количестве теплоты, подведенной к рабочему телу нижнего цикла, составляет теплота, отведенная от рабочего тела верхнего цикла. Применительно к парогазовым установкам можно записать:

                                    ,                          (15)

где ηг – термический КПД газотурбинной установки.

Разделив числитель и знаменатель на Bг, с учетом (114) получим:

                   .         (16)

При  (в случае ПГУКУ) степень бинарности цикла равна единице. Для ПГУПГ с увеличением степени повышения давления степень бинарности цикла уменьшается (рис. 9).

Третий показатель – отношение электрической мощности теплофикационной установки к ее тепловой мощности у:

                                                   ,                                         (17)

где N э и Ф – соответственно электрическая и тепловая мощность установки.

 

Рис. 9. Зависимость степени бинарности цикла от степени

сжатия в компрессоре

 3. Термическая эффективность парогазовых установок

Коэффициент термической эффективности определяется из уравнения

                                            .                                  (18)

Для конденсационных парогазовых установок коэффициент термической эффективности определяется уравнением

                                ,                      (19)

где  - электрическая мощность соответственно газовой и паровой турбины. Уравнения электрической мощности турбин имеют вид

                                                 ,                                       (20)

                                ,                      (21)

где Qпот – потери теплоты в котельном агрегате, основными из которых являются потери теплоты с уходящими газами, существенно зависящие от величины коэффициента избытка воздуха в уходящих газах. Пренебрегая потерями с наружным охлаждением и с химической неполнотой сгорания, запишем потери теплоты как потери с уходящими газами в виде

                                        .                              (22)

Подставляя в (119) выражения (120), (121) и (122), с учетом (114) получим:

                      (23)

Преобразуем комплекс, содержащий потери теплоты с уходящими газами к следующему виду:

                  

где 3,65 – отношение теплоты сгорания газа к теоретически необходимому количеству воздуха, МДж/м3 воздуха. Тогда выражения для коэффициента термической эффективности ГТУ будет иметь вид

                              .                   (24)

Для ПГУКУ  и выражение преобразуется к виду

                                        .                              (25)

Уравнение (124) включает в себя основные характеристики ПГУ, что позволяет расчетным путем определить их характеристики. Термическая эффективность парогазовых установок с котлом полного горения слабо зависит от термической эффективности ГТА, т. е. от степени повышения давления в компрессоре. С увеличением степени повышения давления в компрессоре возрастает избыток воздуха в отходящих из турбины газов, увеличивается доля выработки электроэнергии по паровому циклу и суммарная эффективность ПГУ возрастает незначительно (см. рис. 58).

Термическая эффективность парогазовых установок с котлами-утилизаторами несколько возрастает при увеличении степени повышения давления, несмотря на то, что из-за повышения избытка воздуха в уходящих газах падает эффективность выработки электроэнергии по паровому циклу (возрастают потери с уходящими газами). Во всем диапазоне изменения термической эффективности ГТУ величина эффективности ПГУ полного горения ниже, чем у ПГУ с котлами-утилизаторами (рис. 10).

Рис. 10.Зависимость КПД ПГУ от степени повышения давления в компрессоре

 

 

                                                    

 

                                                          

 

 

Библиографический список

1. Литвак В.В. Региональный вектор энергосбережения/В.В. Литвак, В.А. Силич, М.И. Яворский. Томск: STT, 1999. 320 с.

2. Бушуев В.В. Мониторинг реализации в 2004 г. «Энергетической стратегии России на период до 2020 г.» //Теплоэнергетика. 2005. №12. С.2-5.

3. Спейшер В.А. Обезвреживание промышленных выбросов дожиганием/ В.А. Спейшер. М.: Энергоатомиздат, 1986. 168 с.

4. Котлы утилизаторы и энерготехнологические агрегаты/ А.П. Воинов [и др.]. М.: Энергоатомиздат, 1989. 272 с.

5. Куперман Л.И. Вторичные энергетические ресурсы и энерготехнологическое комбинирование в промышленности/ Л.И. Куперман, С.А. Романовский, Л.Н. Сидельковский. Киев: Вища школа, 1986. 303 с.

6. Мучник Д.А. Теория и техника охлаждения кокса/ Д.А. Мучник, Ю.С. Постыльник. Киев: Вища школа, 1979.

7. Утилизация избыточного тепла при совмещенном процессе термической подготовки шихты и тушения кокса/Б.И. Бабанин [и др.]//Кокс и химия. 1988. С.17-20.

8. Сазонов Б.В. Теплоэнергетические системы промышленных предприятий/ Б.В. Сазонов, В.И. Ситас. М.: Энергоатомиздат, 1990.

9. Хараз Д.И. Пути использования вторичных энергоресурсов в химических производствах/Д.И. Хараз, Б.И. Псахис. М.: Химия, 1984. 224 с.

10.  Соснин Ю.П. Высокоэффективные газовые контактные водонагреватели/Ю.П. Соснин, Е.Н. Бухаркин. 4-е изд., испр. и доп. М.: Стройиздат, 1988. 376 с.

11. Леонтьев С.А. Расчеты поверхностей и коэффициентов тепломассообмена в насадке из неупорядоченных колец Рашига/С.А. Леонтьев//Промышленная теплоэнергетика. 2005. №4. С. 43-46.

12.  Безлепкин В.П. Парогазовые и паротурбинные установки электростанций. СПб.: Изд-во СПбГТУ, 1997. 295 с.

13.  Цанеев С.В. Газотурбинные и парогазовые установки тепловых электростанций: учебное пособие для вузов/ С.В. Цанеев, В.Д. Буров, А.Н. Ремезов; под ред. С.И. Цанаева. М.: Изд-во МЭИ, 2002. 584 с.

14.  Фаворский О.Н. Технологические схемы и показатели экономичности ПГУ с впрыском пара в газовый тракт/О.Н. Фаворский, С.В. Цанеев, В.Д. Буров, Д.В. Карташов// Теплоэнергетика. 2005. №4. С. 28 – 34.

15. Бушин П.С. Опытно-промышленная газотурбинная расширительная станция на Среднеуральской ГРЭС/П.С. Бушин// Теплоэнергетика. 1984. №7. с. 32 – 36.

16.  Об использовании теплоты выхлопных газов газоперекачивающих агрегатов магистральных газопроводов: тр. Х1У школы-семинара молодых ученых и специалистов под рук. акад. РАН А.И. Леонтьева/А.П. Баскаков [и др.]. М. Изд-во МЭИ, 2003. Т.2. С.349-352.

17.  Рациональное использование газа в энергетических установках : справочное руководство/ Р.Б. Ахмедов [и др.]. Л.: Недра, 1990. 423 с.

18.  Тепло- и массообмен : теплотехнический справочник/Е.В. Аметистов [и др.]; под общ. ред. В.А. Григорьева и В.М. Зорина. М.: Энергоатомиздат, 1982. 512 с.

19. Кузнецов Ю.В. Сжатый воздух/Ю.В. Кузнецов, М.Ю. Кузнецов. Екатеринбург: УрО РАН, 2003.

20.  Теплотехника : учебное пособие для вузов/ А.П. Баскаков [и др.]; под ред. А.П. Баскакова. М.: Энергоиздат, 1982. 264 с.

21. Энергосбережение в системах теплоснабжения, вентиляции и кондиционирования воздуха : справочное пособие/ Л.Д. Богуславский [и др.]; под ред. Л.Д. Бугуславского и В.И. Ливчака. М.: Стройиздат, 1990. 624 с.

 


 


Дата добавления: 2021-04-15; просмотров: 96; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!