Механический датчик направления ветра — электронный флюгер



Станция для измерения скорости и направления ветра

· Электроника для начинающих

Обычная бытовая фирменная или самодельная метеостанция измеряет две температуры-влажности (в комнате и на улице), атмосферное давление и дополнительно имеет часы с календарем. Однако, настоящая метеостанция имеет еще много всего — датчик солнечной радиации, измеритель осадков и всякое подобное, что, в общем, требуется только для профессиональных нужд, за одним исключением. Измеритель параметров ветра (скорости, и, главное, направления) — очень полезное дополнение для загородного дома. Причем фирменные датчики ветра довольно дороги даже на Али-Бабе, и имеет смысл присмотреться к самодельным решениям.

Сразу скажу, что если бы я заранее знал, в какой объем ручной работы и потраченных на эксперименты денег выльется моя задумка, может быть и не стал бы начинать. Но любопытство перевесило, а читатели этой статьи имеют шанс избежать тех подводных камней, о которые мне приходилось спотыкаться.

Для измерения скорости ветра (анемометрии) существует стопицот способов, главные из которых такие:

— термоанемометрический,
— механический — с пропеллером (точнее, импеллером) или чашечной горизонтальной крыльчаткой (классический чашечный анемометр), Измерение скорости в этих случаях эквивалентно измерению частоты вращения оси, на которой закреплена пропеллер или крыльчатка.
— а также ультразвуковой, объединяющий измерения скорости и направления.
Для измерения направления способов меньше:
— упомянутый ультразвуковой;
— механический флюгер с электронным съемом угла поворота. Для измерения угла поворота есть также много различных способов: оптические, резистивные, магнитные, индуктивные, механические. Можно, кстати, просто закрепить на валу флюгера электронный компас — вот только надежные и простые (для «наколеночного» повторения) способы передачи показаний с хаотично вращающейся оси придется еще поискать. Потому мы далее выбираем традиционный оптический способ.

При самостоятельном повторении любого из этих способов следует держать в уме требования минимального энергопотребления и круглосуточного (а, может, и круглогодичного?) пребывания на солнце и под дождем. Датчик ветра нельзя разместить под крышей в тени — наоборот, он должен быть максимально удален от всех мешающих факторов и «открыт всем ветрам». Идеальное место размещения — конек крыши дома или, на худой конец, сарая или беседки, удаленных от других строений и деревьев. Такие требования предполагают автономное питание и, очевидно, беспроводной канал передачи данных. Этими требованиями обусловлены некоторые «навороты» конструкции, которая описывается далее.

О минимальном энергопотреблении


Познавательную историю о том, как я пытался воспроизвести самый современный и продвинутый из способов — ультразвуковой, и потерпел неудачу, я расскажу как-нибудь в другой раз. Все другие способы предполагают раздельное измерение скорости и направления, потому пришлось городить два датчика. Поизучав теоретически термоанемометры, я понял, что готовый чувствительный элемент любительского уровня у нас приобрести не получится (на западном рынке они доступны!), а самостоятельно изобретать — ввязываться в очередные НИиОКР с соответствующими тратами времени и денег. Потому по некотором размышлении я решил сделать унифицированную конструкцию на оба датчика: чашечный анемометр с оптическим измерением скорости вращения и флюгер с электронным съемом угла поворота на основе кодирующего диска (энкодера).


Конструкции датчиков


Преимущество механических датчиков в том, что никакие НИиОКР там не требуются, принцип прост и понятен, а качество результата зависит только от аккуратности исполнения тщательно продуманной конструкции.

Так казалось теоретически, на практике это вылилось в кучу механических работ, часть из которых пришлось заказывать на стороне, ввиду отсутствия под рукой токарного и фрезерного станков. Сразу скажу, что я ни разу не пожалел о том, что с самого начала сделал ставку на капитальный подход, а не стал городить конструкции из подручных материалов.

Для флюгера и анемометра нужны следующие детали, которые пришлось заказать у токаря и фрезеровщика (количество и материал указаны сразу для обоих датчиков):


Оси, заметим, обязательно вытачиваются на токарном станке: изготовить на коленке ось с острием точно по центру практически невозможно. А размещение острия точно по оси вращения здесь — определяющий фактор успеха. Кроме того, ось должна быть идеально прямой, никакие отклонения не допускаются.


Механический датчик направления ветра — электронный флюгер


Основой флюгера (как и датчика скорости далее) служит П-образная скоба из дюраля Д-16, изображенная на чертеже вверху слева. В нижнее углубление запрессовывается кусочек фторопласта, в котором делается ступенчатое углубление последовательно сверлами 2 и 3 мм. В это углубление острым концом вставляется ось (для флюгера — из латуни). Сверху она свободно проходит через отверстие 8 мм. Над этим отверстием винтами М2 к скобе прикрепляется прямоугольный кусочек того же фторопласта толщиной 4 мм так, чтобы он перекрывал отверстие. Во фторопласте сделано отверстие точно по диаметру оси 6 мм (расположенное точно по общей оси отверстий — см. сборочный чертеж ниже). Фторопласт вверху и внизу здесь играет роль подшипников скольжения.

Ось в месте трения о фоторопласт можно отполировать, а площадь трения уменьшить, отзенковав отверстие во фторопласте. (См. на эту тему ниже UPD от 13.09.18 и 05.06.19). Для флюгера это не играет особой роли — некоторая «заторможенность» ему даже полезна, а для анемометра придется постараться минимизировать трение и инерцию.

Теперь о съеме величины угла поворота. Классический энкодер Грея на 16 положений применительно к нашему случаю выглядит так, как показано на рисунке:

Размер диска был выбран, исходя из условия надежной оптической изоляции пар излучатель-приемник друг от друга. При такой конфигурации щели шириной 5 мм располагаются с промежутком также 5 мм, а оптические пары расположены на расстоянии ровно 10 мм. Размеры скобы, к которой крепится флюгер, были рассчитаны именно исходя из диаметра диска 120 мм. Все это, конечно, можно уменьшить (особенно, если подобрать светодиоды и фотоприемники как можно меньшего диаметра), но было принята во внимание сложность изготовления энкодера: выяснилось, что фрезеровщики за такую тонкую работу не берутся, потому его пришлось выпиливать вручную надфилем. А тут чем больше размеры, тем надежнее результат и меньше хлопот.

На сборочном чертеже выше показано крепление диска к оси. Тщательно отцентрованный диск крепится винтиками М2 к капролоновой втулке. Втулка размещается на оси так, чтобы зазор вверху был минимальным (1-2 мм) — так, чтобы ось в нормальном положении вращалась свободно, а при перевороте острие не выпадало из гнезда внизу. Блоки фотоприемников и излучателей прикрепляются к скобе сверху и снизу диска, более конкретно об их конструкции далее.

Вся конструкция помещается в пластиковый (АБС или поликарбонат) корпус 150×150×90 мм. В собранном виде (без крышки и флюгера) датчик направления выглядит следующим образом:

Отметьте, что выбранное направление на север помечено стрелкой, его нужно будет соблюдать при установке датчика на место.

На верхушку оси крепится собственно флюгер. Он изготовлен на основе такой же латунной оси, в разрез на тупой стороне которой впаивается хвостовик из листовой латуни. На остром конце на некоторую длину нарезается резьба М6, и на ней с помощью гаек закрепляется круглый груз-противовес, отлитый из свинца:

Груз рассчитан так, чтобы центр тяжести приходился точно на место крепления (передвигая его вдоль резьбы, можно добиться идеальной балансировки). Крепление флюгера к оси осуществляется с помощью нержавеющего винта М3, который проходит через отверстие в оси флюгера и ввинчивается в резьбу, нарезанную в оси вращения (крепящий винт виден на фото выше). Для точной ориентации верхушка оси вращения имеет полукруглое углубление, в которое ложится ось флюгера.



Дата добавления: 2021-04-15; просмотров: 110; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!