Интерпретации квантовой механики



Муниципальное автономное общеобразовательное учреждение средняя

Общеобразовательная школа №15 города Тюмени

2017-2018 гг.
г. Тюмень  
Тема: Теория матрицы Автор работы: Цицулина П.Г.     Руководитель: Субботина Т.Н.

 

 

 


 

Содержание:

 

1. Введение…………………………………………………………………………………………………………..……………3

2. Что такое виртуальная реальность?..................................................................................5

3. Вычислительные возможности…………………………………………………………………………..…………6

4. Видеоигры………………………………………………………………………………………………………………………8

5. GTA 5……………………………………………………………………………………………………………………………….8

6. Sid Meier’s Civilization V………………………………………………………………………………………………….12

7. Эксперимент с двумя щелями……………………………………………………………………………...........14

8. Твёрдые частицы…………………………………………………………………………………………………………..14

9. Волны…………………………………………………………………………………………………………………….……….16

10. Элементарные частицы……………………………………………………………………………………………….18

11. Интерпретации квантовой механики…………………………………………………………………….…….22

12. Копенгагенская интерпретация……………………………………………………………………………………22

13. Многомировая интерпретация……………………………………………………………………….……………24

14. Эксперимент с отложенным выбором…………………………………………………………………………26

15. Вселенная, пространство, время, скорость света………………………………………………………..27

16. Квантовая запутанность………………………………………………………………………………………………..29

17. Принцип неопределенности…………………………………………………………………………………………29

18. Возможность передачи информации быстрее скорости света……………………………………31

19. Практическое измерение скорости передачи информации между элементарными частицами………………………………………………………………………………………………………………….…………35

20. Результаты анкетирования…………………………………………………………………………………………….36

21. Теория симуляции………………………………………………………………………………………………………….37

22. Заключение…………………………………………………………………………………………………………..………..41

23. Приложения……………………………………………………………………………………………………………………42

24. Список используемой литературы ………………………………………………………………………………. 43                                                                     

Введение.

Если выражаться простым языком, то физика – это наука о том, как устроен наш мир. Но в любой системе, даже той которая продумана до мелочей, всегда найдутся неточности. Собственно те недочеты, которые присутствуют в нашей вселенной и натолкнули ученых на мысль о виртуальности нашего мира. Сегодня я предлагаю рассмотреть основные гипотезы по этому поводу и попытаться докопаться до истины.

 

                                                    

3


Цель работы – Попытаться найти доказательства тому, что наш мир -компьютерная симуляция.

Задачи:

1. Изучить приведённые учеными гипотезы по данной теме.

2. Изучить историю появления виртуальной реальности.

3. Рассмотреть вычислительные возможности бедующего.

Объект исследования – Виртуальная реальность.

Предмет исследования – Гипотезы приведенные учеными.

Методы исследования - аналитический метод (анализ документов и статей по данной теме)

 

4


Что такое виртуальная реальность ?

Виртуальная реальность – это созданный техническими средствами мир, в котором человек ощущает себя близко к тому, как он себя ощущает в реальном мире. Степень того на сколько человек ведет и ощущает себя в виртуальной реальности – это степень погружения.

На данный момент (2017г.) виртуальная реальность представляет собой очки и наушники, но есть и более сложные конструкции такие как комнаты с множеством оборудований, для полного погружения.

 

 

5


Вычислительные возможности

По оценкам многих специалистов, примерно лет через 50-100 вычислительные возможности компьютеров вырастут в миллионы раз. Благодаря этому мы сможем создавать виртуальные миры настолько реалистичными, что их персонажи фактически обретут разум, но не будут знать о том, что живут в симуляции.

Кое-кто из учёных даже выдвинул идею, что гипотетически мы все можем быть героями компьютерной игры.

Гипотеза о виртуальности нашего мира была впервые широко представлена в 2003 году философом Ником Бостромом. Он предположил, что если существуют множество достаточно развитых цивилизаций, они склонны создавать симуляции Вселенной или её частей, и мы с большой вероятностью живём в одной из них.

Летом 2016 года Илон Маск заявил, что существует лишь один шанс из миллиарда, что наша реальность не подделка. То есть по факту он на все 100 уверен, что мы живём в матрице.

 

6


Ник Бостром

 

 

Илон Маск

 

 

7


Видеоигры

Для того чтобы понять суть первого доказательства, надо зайти издалека, а именно с того, как работают видеоигры.

GTA 5

Например, играя в GTA V, находясь на одной из улиц города этой игры, вы можете видеть, как по дороге едут машины, по тротуару ходят люди и, в целом, кипит жизнь.

 

8


Свернув за угол и перейдя на другую улицу, вы видите то же самое.

Из-за этого создаётся иллюзия, что это же сейчас происходит и на других улицах данного города. Но это не так.

На самом деле, на других районах в этот момент ничего не происходит. Пока вы там не появитесь, эти улицы будут пусты, там даже текстуры не будут прогружены. Но как только вы туда придёте, незаметно для вас там моментально появятся всё те же пешеходы, автомобили, животные и т. д.

Так вот – по такому принципу работают все видеоигры. Делается это с целью оптимизации нагрузки на «железо» вашего компьютера. То есть, когда в игре вы смотрите вперёд, компьютер максимально фокусирует изображение перед вашим взором. При этом текстуры и объекты позади вас, на которые вы не смотрите, сильно упрощаются или вовсе исчезают.ж

 

9


Это и позволяет облегчить нагрузку на вашу игровую платформу, выдавая максимально красивую графику.

Теперь попробуем всё в той же GTA V посмотреть на город с высоты. Перед нами всё становится видно как на ладони.

 

10


Мы можем наблюдать, как одновременно по многочисленным улицам едут машины. Спрашивается, как мощности игровой консоли хватает на просчёт  

такого числа машин? А вся хитрость состоит в том, что у автомобилей вдали включается очень упрощённая физика.

Например, если мы выпустим ракету в те машины, то от взрыва они даже не разлетятся в разные стороны.

Но как только мы подойдём поближе к одной из улиц, так сразу физика автомобилей усложнится, и они, наконец, начнут реагировать на взрывы.

 

11


Sid Meier’s Civilization V

Теперь давайте посмотрим на игру Цивилизация V.

Если я резко перемещу камеру в другой конец карты, то мы можем увидеть, как на наших глазах локация быстро прогружается, хотя она это должна была сделать за пару мгновений до того, как мы на неё посмотрели.

12


Но дело в том, что у Цивилизации V несовершенный игровой движок, потому мы можем замечать такие задержки. Локация будто бы понимает, что за ней начали наблюдать и быстро внешне становится такой, какой её задумывали разработчики. Получается, что наблюдатель влияет на игровой мир даже простым своим наблюдением.

Так вот, как я и говорила, по такому принципу видеоигры будут работать всегда. Даже через много лет, когда компьютеры будут настолько мощными, что смогут одновременно просчитывать все крупные объекты в виртуальном большом городе, всё равно останутся какие-нибудь мелкие детали, например, насекомые или микробы, которые погружаться будут только тогда, когда на них смотрит наблюдатель, т. е. игрок. И всё ради оптимизации!

Это было важное предисловие. Теперь перейдём к первому доказательству теории матрицы.

 

13


Эксперимент с двумя щелями

Давайте познакомимся с квантовой механикой, а точнее с экспериментом с двумя щелями. Это самый знаменитый эксперимент в истории физики. Его повторяли больше чем любые другие эксперименты, потому что у него были ошеломляющие результаты, и все учёные хотели получить их лично. Именно этот эксперимент перевернул с ног на голову всю физику и вдохновил многих учёных изучать квантовую механику.

Твёрдые частицы

Чтобы понять суть этого эксперимента, мы сначала должны посмотреть на то, как ведут себя частицы.

Если мы будем обстреливать щит с прорезью небольшими твёрдыми шариками, то на экране, о который они бьются, мы увидим одну полоску.

 

 

14


Если мы добавим ещё одну щель и будем обстреливать щит, то на экране мы закономерно увидим две полоски.

15


Волны

А теперь давайте посмотрим, как в этом случае себя поведут волны.

Волны прошли сквозь прорезь и распространились, ударяя экран с наибольшей силой строго по линии прорези.

Яркая полоска на экране показывает силу удара. Она похожа на полосу в первом эксперименте с твёрдыми шариками.

Но! Когда мы добавляем вторую щель, то происходит нечто иное. Если вершина одной волны встречается с вершиной другой, то они гасят друг друга, и на экране мы увидим интерференционный узор из многих полосок.

 

 

16


Точка, где пересекаются две вершины волн, даёт наивысшую силу удара, и мы видим яркие полосы, а там, где волны гасят друг друга, ничего нет.

Таким образом, если мы пропускаем твёрдые шарики через две щели, то видим две полоски.

А вот с волнами мы видим интерференционный узор из многих полосок.

17


Фотон – это очень маленькая частица света.
 Элементарные частицы

                             А теперь давайте посмотрим на кванты. Если                                                                                             мы пропустим фотоны через одну щель, то увидим одну полоску на экране, как и в случае с твёрдыми шариками.

Но если мы пропустим фотоны через две щели, то ожидаем увидеть две полоски. Но нет!

18


Каким-то мистическим образом на экране появляется интерференционный узор из многих полосок.

Как же так? Мы выпустили фотоны, – маленькие частицы света – ожидая увидеть две полоски, но вместо этого видим много полосок, как в случае с волнами. Это ведь невозможно!

Позже учёные выяснили, что такое же странное поведение показывают не только фотоны, но и электроны, протоны и различные атомы. Физики долго ломали голову над этой загадкой.

Они подумали: быть может, эти маленькие шарики бьются друг о друга, из-за чего отталкиваются в разные стороны и поэтому создают интерференционный узор из многих полосок?

Тогда физики стали выстреливать по одной микрочастице друг за другом, чтобы не было ни малейшего шанса их взаимодействия. И вот тут у учёных случился когнитивный диссонанс: вскоре на экране вновь появился интерференционный узор, нарушая все законы физики.

 

19


Как же так? Как элементарные частицы могут создавать узор, словно волны? Ведь их выпускали по одной! Этого никто не понимал.

По логике получалось, что частица будто бы разделялась надвое, проходила через обе щели и ударялась сама о себя. Просто бред какой-то!

Физики были полностью обескуражены этим. Они решили подсмотреть, через какую щель частица проходит на самом деле. Они поставили измеряющий прибор возле одной из щелей и выпустили электрон.

Но в квантовой механике – больше мистики, чем учёные могли себе представить. Когда они начали наблюдать, частицы снова стали вести себя как маленькие шарики и произвели изображение двух полосок, а не интерференционный узор из многих полосок.

 

20


То есть сам факт измерения или наблюдения за тем, через какую щель прошёл электрон, выявил, что он проходит через одну прорезь, а не через две. Электрон решил повести себя иначе, как будто знал, что за ним наблюдают. Наблюдатель разрушил волновую функцию частицы лишь только фактом своего наблюдения! Это вам ничего не напоминает?

Да, всё это очень сильно похоже на работу игрового движка. Создаётся впечатление, что наша Вселенная будто запущена на каком-то компьютере, мощности которого недостаточно, чтобы с точностью просчитывать движение каждой отдельной микрочастицы в пространстве, поэтому он это делает по упрощённой модели в виде волны вероятности. А более точные просчёты начинает делать только тогда, когда за конкретной частицей начинают наблюдать, чтобы не сломать для наблюдателя иллюзию реальности его мира. Такой приём облегчает нагрузку на «железо» вычислительной машины – всё, как в видеоиграх!

Но вся проблема в том, что 100 лет назад, когда учёные пытались дать объяснение аномальным результатам эксперимента с двумя щелями, не было видеоигр, и потому физики не додумались выдвинуть гипотезу о том, что мы живём в виртуальной реальности.

21


Интерпретации квантовой механики

Вместо этого было выдвинуто множество других теорий. Самой известной из них была придумана в 1927 году в городе Копенгаген.

Копенгагенская интерпретация

Учёные Нильс Бор и Вернер Гейзенберг предположили, что элементарные частицы – это как бы одновременно и волны, и частицы.

Нильс Бор и Вернер Гейзенберг

Так вот, для того чтобы измерить электрон, т. е. провести над ним наблюдение, его надо ударить о кванты измерительного прибора. И именно из-за этого удара волновые функции электрона «схлопываются», и он становится только частицей. Таким образом, сам наблюдатель не влияет своим наблюдением на частицу – влияют только кванты измерительного прибора.

 

 

22


Так как это объяснение квантовой механики было сформулировано в городе Копенгаген, его назвали Копенгагенской интерпретацией.

Забавно, но если эта интерпретация верна, то она всё равно не опровергает гипотезу матрицы, т. к. её можно подстроить и под это объяснение.

Например, фотоновая программа может распространяться в сети как волна, а затем перезапускаться в тот момент, когда узел перегружен, превращаясь в частицу. Это объясняет и квантовые волны, и коллапс волновой функции.

23


Многомировая интерпретация

После Копенгагенской интерпретации второй по популярности объяснение причин странного поведения микрочастиц в эксперименте с двумя щелями стала Многомировая интерпретация.

Её суть заключается в том, что, возможно, существуют как бы параллельные вселенные, в каждой из которых действуют одни и те же законы природы.

И что при каждом акте измерения квантового объекта наблюдатель как бы расщепляется на несколько версий. Каждая из этих версий «видит» свой результат измерения и действует в соответствии с ним в своей вселенной.

Вот такое странное объяснение!

В какую из этих интерпретаций больше верить – решайте сами.

 

 

24


Например, опрос учёных, сделанный в 1997 году, на симпозиуме под эгидой UMBC(University of Maryland, Baltimore County – Мэрилендский университет в Балтиморе) показал, что большинство физиков не верят ни копенгагенской, ни многомировой интерпретации. Голоса распределились следующим образом:

· 13 человек проголосовало за Копенгагенскую интерпретацию;

· 8 – за Многомировую;

· несколько учёных – за другие, менее популярные интерпретации;

· 18 физиков высказались против всех предложенных интерпретаций на тот момент времени.

До сих пор спор насчёт правильной интерпретации квантовой механики продолжается по всему миру. Он ведётся между учёными университетов, на конференциях и даже в барах и кафе.

Ну а тем временем в 2006 году развитие технологий позволило впервые провести ещё более хитроумную версию эксперимента с двумя щелями.

Называется она эксперимент с отложенным выбором.

25


Дата добавления: 2021-07-19; просмотров: 21; Мы поможем в написании вашей работы!






Мы поможем в написании ваших работ!