Механизмы головного мозга, управляющие движением 18 страница



Первое из двух основных преобразований, выполняемых зрительной корой, - это такое перераспределение входной информации, в результате которого большинство клеток начинает отвечать не на пятна, а на определенным образом ориентированные отрезки линий. В коре имеется много разнообразных типов клеток; по свойствам своих реакций некоторые из них просты, некоторые сложны, и при знакомстве с ними довольно скоро возникает впечатление, что имеется определенная иерархия, причем более простые клетки подают свои сигналы на вход более сложных. У обезьяны прежде всего выделяется группа клеток, которые ведут себя (насколько это известно) как клетки коленчатого тела: они имеют поля с радиальной симметрией. Все такие клетки располагаются в нижней части одного слоя, называемого слоем IV; он является как раз тем слоем, в который поступает львиная доля волокон коленчатого тела. Создается впечатление, что именно эти наименее сложно устроенные кортикальные клетки являются клетками, ближе всего стоящими ко входу.

 

Сравнение рецептивных полей различных клеток зрительного пути. Ганглиозные клетки сетчатки и нейроны латеральных коленчатых тел имеют концентрические поля либо с возбуждающим центром и тормозной периферией (А), либо наоборот. Пятно света, падающее на центр, вызывает реакцию такой клетки; реакцию вызывает и полоса света, падающая на поле в любой ориентации, если она проходит через центр. В зрительной коре существует иерархия нейронов со все усложняющимися характеристиками. Кортикальные клетки, которые получают сигналы прямо из коленчатых тел, имеют поля с радиальной симметрией. Однако кортикальные клетки, расположенные по зрительному пути дальше, реагируют только на линейные стимулы, имеющие определенную ориентацию. Простые клетки (Б) реагируют на такие линейные стимулы лишь в том случае, если они появляются в определенной части поля. Сложные клетки (В) реагируют на определенным образом ориентированные линии независимо от их расположения в поле, и особенно на линии, которые движутся в определенном направлении (стрелка).

За пределами слоя IV все клетки лучше всего реагируют на отрезки линий, ориентированные определенным образом. Типичная клетка реагирует только тогда, когда свет падает на определенную часть поля зрения, но освещение этой части диффузным светом дает малый или нулевой эффект, и небольшие пятна света тоже ненамного лучше. Самая сильная реакция получается, когда нужным образом ориентированная линия вспыхивает в этом месте или, в случае некоторых клеток, поступательно движется через этот участок. Наиболее эффективная ориентация варьирует от клетки к клетке и обычно определена довольно строго, так что отклонение на 10 или 20 градусов по или против часовой стрелки заметно уменьшает реакцию или уничтожает ее. (Остроту этой избирательности представить трудно. Если 10-20° звучит как огромный диапазон, вспомните, что угол на часах между 12 и 1 равен 30°.) Линия, ориентированная под 90° к оптимальному направлению, почти никогда не вызывает реакции.

 

Позиции рецептивных полей кортикальных нейронов (1-9), картированных при погружении электрода примерно под прямым углом к поверхности, очень близки (А), хотя поля имеют различные размеры и некоторый разброс. При наклонном погружении (5) было зарегистрировано по 2-4 клетки в каждой из четырех точек (1-4) на расстоянии 0,1 мм. В каждой группе попадаются разные размеры и имеется некоторый разброс, но теперь заметен также систематический сдвиг: поля последовательных групп клеток несколько смещены относительно друг друга.

В зависимости от конкретной клетки лучшим стимулом может быть яркая линия на темном фоне или наоборот: это может быть и граница между светлой и темной областями. Если это линия, ее толщина обычно существенна; увеличение ее свыше некоторого оптимального значения уменьшает реакцию точно так же. как увеличение диаметра пятна в случае ганглиозных клеток или клеток коленчатого тела. При этом для данной части поля зрения диаметры центральных зон рецептивных полей клеток коленчатого тела и оптимальные для коры толщины линий сравнимы.

Чувствительные к ориентации нейроны варьируют по своей сложности. Самые простые, которые мы назовем «простыми» клетками, ведут себя так, как будто к ним на вход поступают сигналы непосредственно от нескольких клеток с концентрическими полями, имеющими радиальную симметрию, т. е. от клеток того типа, которые обнаружены в слое IV. Свойства этих простых клеток, реагирующих на оптимально ориентированные линии, предъявляемые в строго определенном месте, легче всего объяснить, приняв, что все центры соответствующих полей входных клеток являются либо возбуждающими, либо тормозными и что они располагаются вдоль прямой линии. В настоящее время у нас нет непосредственных подтверждений этой схемы, но она привлекает своей простотой и тем, что согласуется с рядом косвенных свидетельств. Согласно работе Дж. Ланд (J. Lund) из Медицинской школы Вашингтонского университета, которая за последние несколько лет сделала больше, чем кто-либо другой для изучения этой области коры методом Гольджи, клетки слоя IV проецируются в слои, находящиеся прямо над ними, т. е. примерно туда, где обнаружены простые клетки.

Вторая группа чувствительных к ориентации нейронов - это гораздо более многочисленные «сложные» клетки. Они подразделяются на несколько категорий, но основная их особенность - это то, что местоположение линий для них не так существенно. Сложные клетки ведут себя так, как будто они получают сигналы от некоторого числа простых клеток, имеющих рецептивные поля с одинаковой оптимальной ориентацией, но несколько различающейся локализацией. Эта схема хорошо объясняет сильную стабильную импульсацию, возбуждаемую в сложных клетках, когда линию держат в оптимальной ориентации и проводят через рецептивное поле. При оптимальной ориентации линии многие клетки предпочитают одно из направлений движения другому, противоположному. Для объяснения такого поведения было предложено несколько возможных схем, но точный механизм пока неизвестен.

Хотя нет прямых доказательств того, что чувствительные к ориентации клетки имеют какое-либо отношение к зрительному восприятию, весьма соблазнительно думать, что они представляют некую раннюю ступень анализа зрительных образов. Имеет смысл спросить, от каких клеток этой ранней ступени можно ожидать реакции на какой-нибудь очень простой зрительный стимул, скажем темное пятно на светлом фоне. Любая клетка, рецептивное поле которой окажется полностью внутри или вне границ такого стимула, совершенно не будет затронута его присутствием, поскольку клетки коры эффективно игнорируют изменения диффузной засветки всего рецептивного поля.

 

Показаны предпочтительные ориентации 23 нейронов, встретившихся при наклонном погружении микроэлектрода в кору (А); самый эффективный наклон стимула неуклонно сдвигался в направлении против часовой стрелки. Б. График сходного эксперимента, однако в этом случае несколько раз наблюдалась инверсия направления сдвига; результаты многих таких экспериментов в сочетании с тем фактом, что микроэлектрод, проникающий в кору под прямым углом, регистрирует только клетки, предпочитающие одну и ту же ориентацию (кроме клеток слоя IV, имеющих поля с радиальной симметрией и не имеющих предпочтительных направлений), заставляют предполагать, что кора подразделена на приблизительно параллельные подслои ткани, причем каждый подслой, называемый ориентационной колонкой, содержит нейроны со сходной ориентационной избирательностью (В).

Единственными клетками, которые должны прореагировать, будут те, через поля которых пройдет граница. Из клеток с радиальной симметрией сильнее всего возбудятся те, у которых граница коснется центра (так как тогда возбуждающая и тормозная зоны будут максимально неравно освещены). Из клеток, чувствительных к ориентации, должны активироваться только те, чьим оптимальным ориентациям случилось совпасть с превалирующим направлением границы. И среди таких клеток простые клетки более требовательны к стимулу, чем сложные, так как они реагируют оптимальным образом только тогда, когда граница пройдет вдоль линии, разделяющей возбуждающую и тормозную зоны. Важно представлять себе, что эта область коры производит свои операции только локально, на маленьких участках изображений; как анализируется или обрабатывается мозгом все изображение, т. е. как эта информация комбинируется и обобщается на более поздних ступенях, если действительно это имеет место, пока неизвестно.

Вторая важная функция зрительной коры обезьяны - комбинировать входы от двух глаз. В латеральном коленчатом теле любой нейрон может реагировать либо на стимуляцию левого глаза, либо на стимуляцию правого, но ни одна клетка не реагирует на стимуляцию обоих глаз. Это может показаться удивительным, поскольку в каждое коленчатое тело поступают сигналы от обоих глаз; однако коленчатые тела устроены таким образом, что пути от двух глаз проходят через них, не смешиваясь. Каждое коленчатое тело подразделяется на шесть слоев, причем три слоя, связанные с левым глазом, переплетаются, как пальцы, с тремя слоями, предназначенными для правого глаза. В каждом слое представлена карта контралатеральной половины зрительного мира (причем все шесть карт располагаются строго упорядоченно, так что на радиальном пути, пересекающем шесть слоев, рецептивные поля всех клеток, которые при этом встретятся, будут иметь практические идентичные позиции в поле зрения). Поскольку каждый данный слой получает входные сигналы только от одного глаза, отдельные клетки каждого слоя должны быть монокулярными.

Даже в зрительной коре нейроны, на которые клетки коленчатого тела переключаются непосредственно - клетки с радиальной симметрией из слоя IV, - все (насколько нам известно) строго монокулярны; то же самое справедливо для всех простых клеток. Только на уровне сложных клеток пути от двух глаз сходятся, но и там смешение информации неполное и принимает специфическую форму. Примерно половина всех сложных клеток монокулярна в том смысле, что любая такая клетка может быть активирована только стимуляцией какого-то одного глаза. На остальные клетки могут оказывать независимые влияния оба глаза.

Если построить карты рецептивных полей бинокулярной клетки для правого и левого глаза (посылая стимулы сначала в один глаз, а затем в другой) и сравнить эти два поля, то окажется, что они имеют одинаковые позиции, уровни сложности, предпочтительные ориентации и направления - т. е. все, что можно узнать о клетке, стимулируя один глаз, подтверждается при стимуляции второго. Есть только одно исключение: если сначала один, а затем второй глаз тестировать идентичными стимулами, две реакции не обязательно будут одинаковыми количественно; во многих случаях один глаз доминирует, устойчиво вызывая более частые разряды, чем второй.

Перебирая клетки, можно найти все степени доминирования глаз, от полной монополии одного глаза через равенство до исключительного влияния второго глаза. У обезьяны клетки с заметным предпочтением одного глаза встречаются несколько чаще, чем клетки, в реакции которых оба глаза вносят примерно равные вклады. По-видимому, связи типичной бинокулярной клетки первичной зрительной коры с двумя глазами практически одинаковы по организации, но могут различаться по числу соединительных волокон.

Весьма замечательно, что сложные схемы связей, обеспечивающих избирательность по отношению к ориентации и направлению движения, а также другие особые свойства, должны быть представлены в виде двух копий. И, пожалуй, еще более поразительно, что все это можно наблюдать у новорожденных животных. Данные схемы связей в основном врожденные и, по-видимому, детерминированы генетически. (Однако в одном специальном отношении некоторое дозревание бинокулярных связей осуществляется главным образом после рождения.)

Теперь мы обратимся к рассмотрению закономерностей группировки клеток в коре. Каким образом распределены там клетки со сходными характеристиками - близкие по степени сложности, локализации рецептивного поля и доминированию глаз - сгруппированы вместе или разбросаны в случайном порядке? Из приводимого описания будет очевидно, что сходные по сложности клетки имеют тенденцию группироваться в слои, причем клетки с радиальной симметрией лежат внизу слоя IV, простые клетки - прямо над ними, а сложные клетки - в слоях II, III, V и VI. Сложные клетки можно подразделить еще на несколько категорий, и те, которые находятся в одном слое, в ряде отношений сильно отличаются от клеток других слоев.

Эти различия между слоями приобретают особый интерес в аспекте следующего важного открытия, подтвержденного рядом физиологов и анатомов в последние несколько десятилетий: волокна, выходящие из разных слоев коры, имеют различные места назначения. Так, самый глубокий слой зрительной коры - слой VI - проецируется главным образом (а возможно, и исключительно) обратно в латеральное коленчатое тело; слой V проецируется в верхнее двухолмие, зрительный отдел среднего мозга; слои II и III направляют свои волокна в другие части коры. Такая определенность в локализации проекций каждого слоя, возможно, заслуживает того, чтобы рассматривать ее как третье важное прозрение относительно организации коры.

 

Ориентационные колонки удалось выявить в виде уловимых анатомических структур с помощью дезоксиглюкозных радиоавтографов, полученных авторами и М. Страйкером. Обезьяне вводили дезоксиглюкозу с радиоактивной меткой; она поглощалась преимущественно работающими клетками, и в них накапливались продукты первых этапов метаболизма. Сразу после инъекции животному предъявляли решетку из вертикальных полос, в связи с чем клетки, реагирующие предпочтительно на вертикальные линии, были самыми активными, а затем стали самыми радиоактивными. На этом срезе перпендикулярные к поверхности области активных клеток представляют собой узкие полосы, расположенные на расстоянии около 0,5 мм. Слой IV (не проявляющий избирательности в отношении ориентации), как и ожидалось, однороден по радиоактивности.

Следующий варьирующий параметр стимуляции, который нужно рассмотреть, - это положение рецептивного поля в поле зрения. Описывая латеральное коленчатое тело, мы указывали, что в каждом его слое образуется упорядоченная топографическая карта контралатеральной половины поля зрения. В проекции латерального коленчатого тела на зрительную кору этот порядок сохраняется, в результате чего создается кортикальная карта поля зрения. При наличии такой упорядоченной карты не удивительно, что соседние клетки в этой части коры всегда имеют рецептивные поля, располагающиеся в непосредственной близости; в действительности, они обычно перекрываются. Если в кору под прямым углом к поверхности погружать микроэлектрод и регистрировать активность клетки за клеткой, сделав до 100 или 200 отведений во все более глубоких слоях, то опять же рецептивные поля будут большей частью перекрываться, причем каждое новое поле будет накладываться на все предыдущие. Область, занимаемая всей «пачкой» полей, обычно в несколько раз превышает размер одного типичного поля.

Размеры этих рецептивных полей несколько варьируют. Некоторые вариации соотносятся со слоистостью: наибольшие поля при любом погружении имеют тенденцию обнаруживаться в слоях III, V и VI. Однако наиболее важные вариации коррелируют с эксцентриситетом, или расстоянием рецептивного поля клетки от центра взора. Размеры полей и величина соответствующего разброса в тех областях коры, где картирована область центра взора, выглядят крошечными по сравнению с размерами и разбросом в тех частях, где картирована далекая периферия. Пачку накладывающихся полей, которые картируются при погружении, начинающемся в любой точке коры, мы называем «агрегатным» полем этой точки. Очевидно, что величина агрегатного поля является функцией расстояния от центра взора.

 

Картина распределения предпочтительных ориентации, если ее рассматривать в фас, неожиданно оказывается весьма сложной. Этот радиоавтограф получен с помощью дезоксиглюкозы со среза, тангенциального к несколько изогнутым слоям коры. Более темные области соответствуют однородно радиоактивному слою IV. В других слоях ориентационные области выглядят как сложным образом изогнутые полосы, напоминающие стены рассматриваемого сверху лабиринта, однако расстояния между полосами примерно одинаковы.

Если электрод входит наклонно, почти параллельно поверхности, снова выявляется разброс в позиции полей от точки к точке, но теперь этот разброс накладывается на систематическое смещение позиции поля, направление которого диктуется топографической картой поля зрения. При этом обнаруживается интересная закономерность: оказывается, что продвижение электрода примерно на 1-2 миллиметра всегда приводит к такому смещению в поле зрения, которого достаточно для перехода в совершенно новую область. Короче, величина продвижения в поле зрения примерно соответствует при этом размеру агрегатного рецептивного поля. Для первичной зрительной коры это справедливо, где бы ни производилось погружение. В центре взора поля и их разброс малы, но таковы же и смещения, соответствующие продвижению на миллиметр вдоль коры. С увеличением эксцентриситета (по мере приближения к границам поля зрения) как поля и их разброс, так и смещения, становятся пропорционально больше. Получается, что повсюду кусочек коры протяженностью в один или два миллиметра является тем блоком, который обслуживает область поля зрения, эквивалентную величине агрегатного поля.

 

Бинокулярные клетки могут возбуждаться как каждым глазом независимо, так и более сильно - двумя глазами вместе. Здесь представлены относящиеся к левому и правому глазам рецептивные поля сложной клетки, контролирующей область в верхнем левом квадранте поля зрения. (Оси координат соответствуют горизонтальному и вертикальному меридианам поля, пересекающимся в точке фиксации.) Два данных рецептивных поля идентичны, но сила реакции может зависеть от того, какой глаз стимулируется: правый или левый. Глаз, оказывающий более сильное влияние, называется доминантным.

Из этого наблюдения следует предположение о способе, с помощью которого кора решает такую фундаментальную проблему: как сделать, чтобы зрительная картина анализировалась детально в центральной части и намного грубее на периферии. В сетчатке, перед которой стоит такая же проблема, по очевидным оптическим причинам число миллиметров, соответствующих градусу поля зрения, постоянно. Сетчатка обрабатывает центральные участки более детально благодаря тому, что имеет огромное количество ганглиозных клеток, каждая из которых обслуживает крошечную область в центре поля зрения; слой ганглиозных клеток в центральной части сетчатки относительно толст, тогда как в периферических частях сетчатки он очень тонок. В то же время, было, по-видимому, желательно, чтобы кора везде имела одинаковую толщину. Здесь нет никаких оптических ограничений типа накладываемых на сетчатку, и потому площади просто распределяются в соответствии с проблемами, которые должны решаться.

На каждом квадратном миллиметре коры предположительно действуют примерно такие же механизмы, как на любом другом. Несколько тысяч волокон из коленчатого тела входит в такую функциональную ячейку коры, и что-то около 50000 волокон выходит из нее, независимо от того, представлена ли здесь малая часть зрительного мира очень детально или большая по размеру часть соответственно менее детально. Как мы указывали вначале, предположение об однородности коры возникает при взгляде на окрашенные срезы. Оно убедительно подтверждается, когда мы исследуем архитектонику дальше, специально обращая внимание на чувствительность к ориентации или на доминирование глаз.

 

В физиологических исследованиях была выявлена группировка клеток в соответствии с доминированием глаз. При некотором произвольном погружении в кору под прямым углом к поверхности (1) микроэлектрод может встретить только клетки, которые оказывают предпочтение левому глазу (Lr), а в слое IV - клетки, которые возбуждаются только левым глазом (L); при другом вертикальном погружении (2) для всех клеток доминантным будет правый глаз (R,), а в слое IV клетки будут возбуждаться исключительно правым глазом (R). При наклонном погружении будет наблюдаться регулярное чередование доминирования глаз. Результаты многократных погружений наводят на мысль, что кора подразделена на области с поперечным сечением шириной около 0,4 мм и со стенками, перпендикулярными поверхности и слоям коры - колонки глазодоминантности.


Дата добавления: 2021-07-19; просмотров: 83; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!