Практические варианты стабилизатора.



Много вариантов не будет, так как самые простые, повторяющие классические варианты по схемотехнике, не позволяют ни поднять рабочую частоту или ток, ни увеличить КПД, ни получить хорошую устойчивость. По этому наиболее оптимальный вариант получается один, блок-схема которого и была показана на Рис.2. Могут меняться только номиналы компонентов в зависимости от требуемых характеристик стабилизатора.

На Рис.8 приведена схема классического варианта.

Рис.8

Из особенностей – после выведения из цепи ОС тока выходного конденсатора (С3), стало возможным уменьшить индуктивность дросселя. Для пробы был взят старый отечественный дроссель на стержне типа ДМ-3 на 12мкГн. Как видно, характеристики схемы получились достаточно хорошие.

Желание повысить КПД привели к схеме, показанной на Рис.9

Рис.9

В отличие от предыдущей схемы резистор R1 подключен не к источнику питания, а на выход стабилизатора. В результате, напряжение на резисторе R1 стало меньше на величину напряжения на нагрузке. При прежнем токе через него мощность, выделяемая на нём, уменьшилась с 0.5Вт до 0.15Вт.

Заодно была увеличена индуктивность дросселя, что так же увеличивает КПД стабилизатора. В результате КПД увеличился на несколько процентов. Конкретные цифры приведены на схеме.

Ещё одна характерная особенность двух последних схем. У схемы на Рис.8 очень хорошая стабильность тока нагрузки при изменении напряжения питания, но низковато КПД. У схемы на Рис.9 наоборот, КПД достаточно высокий, но стабильность тока плохая – при изменении напряжения питания с 12В до 15В ток нагрузки увеличивается с 0.27А до 0.3А.

Это вызвано не правильным выбором сопротивления резистора R1, о чём уже говорилось ранее (смотрите Рис.4). Так как повышенное сопротивление R1, уменьшая стабильность тока нагрузки, увеличивает КПД, то в некоторых случаях этим можно воспользоваться. Скажем, при аккумуляторном питании, когда пределы изменения напряжения малы, а высокий КПД более актуален.

Следует отметить некоторую закономерность.

Было изготовлено довольно много стабилизаторов (практически все – для замены ламп накаливания на светодиодные в салоне автомобиля), и пока стабилизаторы требовались от случая к случаю, микросхемы брались из неисправных плат сетевых «Хабов» и «Свичей». Несмотря на разницу в производителях почти все микросхемы позволяли получить приличные характеристики стабилизатора даже в простых схемах.

Попалась только микросхема GS34063S от Globaltech Semiconductor, которая ни как не хотела работать на высоких частотах.

Потом было закуплено несколько микросхем MC34063ACD и MC34063EBD от STMicroelectronics, которые показали ещё худшие результаты – на повышенных частотах не работали, устойчивость плохая, завышенное напряжение опоры токового компаратора (0.45-0.5В), плохая стабилизация тока нагрузки при хорошем КПД или плохой КПД при хорошей стабилизации…

Возможно, плохая работа перечисленных микросхем объясняется их дешевизной – закупались самые дешёвые из того, что было, так как микросхема MC34063A (DIP-8) той же фирмы, снятая с неисправного «Свича» работала нормально. Правда, на относительно низкой частоте – не более 160КГц.

Хорошо работали следующие микросхемы, взятые из сломанной аппаратуры:

Sipex Corporation (SP34063A),
Motorola (MC34063A),
Analog Technology (AP34063N8),
Anachip (AP34063 и AP34063А).
Fairchild (MC34063A) — не уверен, что правильно опознал фирму.

ON Semiconductor, Unisonic Technologies (UTC) и Texas Instruments — не помню, так как обращать внимание на фирму стал только после того, как столкнулся с нежеланием работать мс некоторых фирм, а специально микросхемы этих фирм не покупались.

Что бы не выбрасывать закупленные, плохо работающие, микросхемы MC34063ACD и MC34063EBD от STMicroelectronics, было проведено несколько экспериментов, которые и привели к схеме, показанной в самом начале на Рис.2.

На следующем Рис.10 показана практическая схема стабилизатора с корректирующей цепью RfCf (на данной схеме R3C2). О разнице в работе стабилизатора без корректирующей цепочки и с ней уже рассказывалось ранее в разделе «Об устойчивости» и приводились графики (Рис.5, Рис.6, Рис.7).

Рис.10

Из графика на Рис.7 видно, что стабилизация тока отличная во всём диапазоне питающих напряжений микросхемы. Устойчивость очень хорошая – будто ШИМ работает. Частота достаточно высокая, что позволяет брать малогабаритные дроссели с невысокой индуктивностью и полностью отказаться от выходного конденсатора. Хотя установка небольшого конденсатора может полностью убрать пульсации тока нагрузки. О зависимости амплитуды пульсаций тока нагрузки от ёмкости конденсатора говорилось ранее в разделе «Об устойчивости».

Как уже говорилось, у доставшихся мне микросхем MC34063ACD и MC34063EBD от STMicroelectronics оказалось завышенное опорное напряжение токового компаратора – 0.45В-0.5В соответственно, не смотря на указанное в даташите значение 0.25В-0.35В. Из-за этого при больших токах нагрузки на резисторе-датчике тока получаются большие потери. Для уменьшения потерь, в схему был добавлен источник тока на транзисторе VT1 и резисторе R2. (Рис.11).

Рис.11

Благодаря этому источнику тока, через резистор R3 протекает дополнительной ток смещения величиной 33мкА, поэтому напряжение на резисторе R3 даже без тока нагрузки равно 33мкА*10КОм=330мВ. Так как пороговое напряжение токового входа микросхемы 450мВ, то для срабатывания компаратора тока на резисторе-датчике тока R1 должно быть напряжение 450мВ-330мВ=120мВ. При токе нагрузки 1А резистор R1 должен быть на 0.12В/1А=0.12Ом. Ставим имеющееся в наличии значение 0.1Ом.
Без стабилизатора тока на VT1 резистор R1 нужно было бы выбирать из расчёта 0.45В/1А=0.45Ом, и на нём рассеивалась бы мощность 0.45Вт. Сейчас же при том же токе потери на R1 всего 0.1Вт

Питание данного варианта от аккумулятора, ток в нагрузке до 1А, мощность 8-10Вт. Ток короткого замыкания выхода 1.1А. При этом потребляемый ток уменьшается до 64мА при напряжении питания 14.85В, соответственно потребляемая мощность падает до 0.95Вт. Микросхема в таком режиме даже не греется и может находиться в режиме КЗ сколько угодно.

Остальные характеристики приведены на схеме.

Микросхема взята в корпусе SO-8 и ток нагрузки в 1А для неё предельный. Она очень сильно греется (температура выводов 100 градусов!), по этому лучше ставить микросхему в корпусе DIP-8, переделанную под SMD монтаж, делать большие полигоны и(или) придумывать радиатор.
Напряжение насыщения ключа микросхемы довольно большое — почти 1В при токе 1А, поэтому и нагрев такой. Хотя, судя по даташиту на микросхему, напряжение насыщения ключевого транзистора при токе 1А не должно превышать 0.4В.

Сервисные функции.

Не смотря на отсутствие каких либо сервисных возможностей в микросхеме, их можно реализовать самостоятельно. Обычно, для стабилизатора тока светодиодов требуются выключение и регулировка тока нагрузки.

Включение-выключение

Выключение стабилизатора на микросхеме МС34063 реализуется подачей напряжения на 3-й вывод. Пример показан на Рис.12.

Рис.12

Экспериментально было определено, что при подаче напряжения на 3-й вывод микросхемы её задающий генератор останавливается, а ключевой транзистор закрывается. В таком состоянии потребляемый ток микросхемы зависит от её производителя и не превышает тока холостого хода, указанного в даташите (1.5-4мА).

Остальные варианты выключения стабилизатора (например, подачей на 5-й вывод напряжения более 1.25В) оказываются хуже, так как не останавливают задающий генератор и микросхема потребляет больший ток по сравнению у правлением по 3-у выводу.

Суть такого управления заключается в следующем.

На 3-м выводе микросхемы действует пилообразное напряжение заряда и разряда частотозадающего конденсатора. Когда напряжение достигает порогового значения 1.25В, начинается разряд конденсатора, а выходной транзистор микросхемы закрывается. Значит, для выключения стабилизатора нужно подать на 3-й вход микросхемы напряжение не менее 1.25В.

Согласно данным даташитов на микросхему времязадающий конденсатора разряжается током максимум 0,26мА. Значит, при подаче на 3-й вывод внешнего напряжения через резистор, для получения выключающего напряжения не менее 1.25В ток через резистор должен быть не менее 0.26мА. В результате имеем две основные цифры для расчёта внешнего резистора.

Например, при напряжении питания стабилизатора 12…15В, стабилизатор должен быть надёжно выключен при минимальном значении – при 12В.

В результате, сопротивление дополнительного резистора находим из выражения:

R=(Uп-Uvd1-1.25В)/0.26мА=(12В-0.7В-1.25В)/0.26мА=39КОм.

Для надёжного выключения микросхемы сопротивление резистора выбираем меньше вычисленного значения. На фрагменте схемы Рис.12 сопротивление резистора равно 27КОм. При таком сопротивлении напряжение выключения получается около 9В. Значит, при напряжении питания стабилизатора 12В можно надеяться на надёжное выключение стабилизатора с помощью данной схемы.

При управлении стабилизатором от микроконтроллера резистор R нужно пересчитать для напряжения 5В.

Входное сопротивление по 3-му входу микросхемы довольно большое и любое подключение внешних элементов может влиять на формирование пилообразного напряжения. Для развязки цепей управления от микросхемы и, тем самым, сохранении прежней помехоустойчивости служит диод VD1.

Управление стабилизатором можно осуществлять либо подачей постоянного напряжения на левый вывод резистора R (Рис.12), либо закорачиванием на корпус точки соединения резистора R с диодом VD1 (при постоянном наличии напряжения на левом выводе резистора R).

Стабилитрон VD2 призван защитить вход микросхемы от попадания высокого напряжения. При низких напряжениях питания он не нужен.

Регулировка тока нагрузки

Так как опорное напряжение компаратора тока микросхемы равно сумме напряжений на резисторах R1 и R3, то изменением тока смещения резистора R3 можно регулировать ток нагрузки (Рис.11).

Возможны два варианта регулировки – переменным резистором и постоянным напряжением.

На Рис.13 приведен фрагмент схемы Рис.11 с необходимыми изменениями и расчётные соотношения, позволяющие рассчитать все элементы схемы управления.

Рис.13

Для регулировки тока нагрузки переменным резистором нужно постоянный резистор R2 заменить сборкой резисторов R2’. В этом случае, при изменении сопротивления переменного резистора, общее сопротивление резистора R2’ будет меняться в пределах 27…37КОм, а ток стока транзистора VT1 (и резистора R3) будет меняться в пределах 1.3В/27…37КОм=0.048…0,035мА. При этом на резисторе R3 напряжение смещения будет меняться в пределах 0.048…0,035мА*10КОм=0.48…0,35В. Для срабатывания компаратора тока микросхемы на резисторе-датчике тока R1 (Рис.11) должно падать напряжение 0.45-0.48…0,35В=0…0.1В. При сопротивлении R1=0.1Ом такое напряжение будет падать на нём при протекании через него тока нагрузки в пределах 0…0.1В/0.1Ом=0…1А.

То есть, меняя сопротивление переменного резистора R2’ в пределах 27…37КОм сможем регулировать ток нагрузки в пределах 0…1А.

Для регулировки тока нагрузки постоянным напряжением нужно в затвор транзистора VT1 поставить делитель напряжения Rd1Rd2. С помощь этого делителя можно согласовать любое напряжение управления с требуемым для VT1.

На Рис.13 приведены все нужные для расчёта формулы.

Например, требуется регулировка тока нагрузки в пределах 0…1А с помощью постоянного напряжения, изменяемого в пределах 0…5В.

Для использования схемы стабилизатора тока на Рис.11 в цепь затвора транзистора VT1 ставим делитель напряжения Rd1Rd2 и рассчитываем номиналы резисторов.

Исходно, схема рассчитана на ток нагрузки 1А, который задаётся током резистора R2 и пороговым напряжением полевого транзистора VT1. Для уменьшения тока нагрузки до нуля, как следует из прошлого примера, нужно увеличить ток резистора R2 с 0.034мА до 0.045мА. При неизменном сопротивлении резистора R2 (39КОм) напряжение на нём должно меняться в пределах 0.045…0,034мА*39КОм=1.755…1.3В. При нулевом напряжении на затворе и пороговом напряжении транзистора VT2 1.3В на резисторе R2 устанавливается напряжение 1.3В. Для увеличения напряжения на R2 до 1.755В нужно подать на затвор VT1 постоянное напряжение величиной 1.755В-1.3В=0.455В. По условию задачи такое напряжение на затворе должно быть при управляющем напряжении +5В. Задавшись сопротивлением резистора Rd2 100КОм (для минимизации управляющего тока) находим сопротивление резистора Rd1 из соотношения Uу=Ug*(1+Rd2/Rd1):

Rd1= Rd2/(Uу/Ug-1)=100КОм/(5В/0.455В-1)=10КОм.

То есть, при изменении напряжения управления от нуля до +5В ток нагрузки будет уменьшаться с 1А до нуля.

Полная принципиальная схема стабилизатора тока на 1А с функциями включения-выключения и регулировки тока приведена на Рис.14. Нумерация новых элементов продолжает начатую по схеме Рис.11.

В составе Рис.14 схема не проверялась. Но полностью проверялась схема по Рис.11, на базе которой она создана.

Приведенный на схеме способ включения-выключения проверен макетированием. Способы регулировки тока пока проверены только моделированием. Но так как способы регулировки созданы на базе реально проверенного стабилизатора тока, то при сборке придётся только пересчитывать номиналы резисторов под параметры примененного полевого транзистора VT1.

Рис.14

В составе Рис.14 схема не проверялась. Но полностью проверялась схема по Рис.11, на базе которой она создана.

Приведенный на схеме способ включения-выключения проверен макетированием. Способы регулировки тока пока проверены только моделированием. Но так как способы регулировки созданы на базе реально проверенного стабилизатора тока, то при сборке придётся только пересчитывать номиналы резисторов под параметры примененного полевого транзистора VT1.

В приведенной схеме использованы оба варианта регулировки тока нагрузки – переменным резистором Rp и постоянным напряжением 0…5В. Гегулировка переменным резистором выбрана немного другой по сравнению с Рис.12, что позволило применить оба варианта одновременно.

Обе регулировки зависимы – ток, выставленный одним из способов, является максимальным для другого. Если переменным резистором Rp выставить ток нагрузки 0.5А, то регулировкой напряжения ток можно менять от нуля до 0.5А. И наоборот – ток 0.5А, выставленный постоянным напряжением, переменным резистором будет меняться тоже от нуля до 0.5А.

Зависимость регулировки тока нагрузки переменным резистором — экспоненциальная, поэтому для получения линейной регулировки переменный резистор желательно выбрать с логарифмической зависимостью сопротивления от угла поворота.

При увеличении сопротивления Rp ток нагрузки тоже увеличивается.

Зависимость регулировки тока нагрузки постоянным напряжением – линейная.

Переключатель SB1 включает или выключает стабилизатор. При разомкнутых контактах стабилизатор выключен, при замкнутых – включен.

При полностью электронном управлении выключение стабилизатора можно реализовать либо подачей постоянного напряжения непосредственно на 3-й вывод микросхемы, либо посредством дополнительного транзистора. В зависимости от требуемой логики управления.

Конденсатор С4 обеспечивает мягкий запуск стабилизатора. При подаче питания, пока конденсатор не зарядится, ток полевого транзистора VT1 (и резистора R3) не ограничен резистором R2 а равен максимальному для полевого транзистора, включенного в режиме источника тока (единицы — десятки мА). Напряжение на резисторе R3 превышает пороговое для токового входа микросхемы, по этому ключевой транзистор микросхемы закрыт. Ток через R3 будет постепенно уменьшаться пока не достигнет значения, заданного резистором R2. При приближении к этому значению напряжение на резисторе R3 уменьшается, напряжение на входе защиты по току всё больше зависит от напряжения на резисторе-датчике тока R1 и, соответственно, от тока нагрузки. В результате ток нагрузки начинает увеличиваться от нуля до заранее определённого значения (переменным резистором или постоянным напряжением управления).

Печатная плата.

Ниже представлены варианты печатной платы стабилизатора (по блок-схеме Рис.2 или Рис.10 — практический вариант) для разных корпусов микросхемы (DIP-8 или SO-8) и разных дросселей (стандартных, заводского изготовления или самодельных на кольце из распыленного железа). Плата нарисована в программе Sprint-Layout 5-й версии: [wpdm_file id=74 title=»true» desc=»true» template=»link-template-calltoaction3.php»]

Все варианты рассчитаны на установку SMD элементов типоразмера от 0603 до 1206 в зависимости от расчётной мощности элементов. На плате есть посадочные места под все элементы схемы. При распайке платы некоторые элементы можно не устанавливать (об этом уже рассказывалось выше). Например, я уже полностью отказался от установки частотозадающего CТ и выходного Co конденсаторов (Рис.2). Без частотозадающего конденсатора стабилизатор работает на более высокой частоте, а необходимость в выходном конденсаторе есть только при больших токах нагрузки (до1А) и(или) малых индуктивностях дросселя. Иногда есть смыл установить частотозадающий конденсатор, снизив рабочую частоту и, соответственно, динамические потери мощности при больших токах нагрузки.

Каких либо особенностей печатные платы не имеют и могут быть выполнены как на одностороннем, так и на двухстороннем фольгированном текстолите. При использовании двухстороннего текстолита вторая сторона не вытравливается и служит дополнительным теплоотводом и (или) общим проводом.

При использовании металлизации обратной стороны платы в качестве теплоотвода нужно просверлить сквозное отверстие возле 8-го вывода микросхемы и соединить пайкой обе стороны короткой перемычкой из толстой медной проволоки. Если используется микросхема в DIP корпусе, то отверстие нужно просверлить против 8-го вывода и при пайке использовать этот вывод в качестве перемычки, распаяв вывод с обеих сторон платы.

Хорошие результаты вместо перемычки даёт установка заклёпки из медного провода диаметром 1,8мм (жила из кабеля сечением 2,5мм2). Ставится заклёпка сразу после вытравливания платы – нужно высверлить отверстие диаметром, равным диаметру провода заклёпки, плотно вставить кусочек провода и укоротить его так, что бы он выступал из отверстия не более, чем на 1мм, и хорошенько расклепать с обеих сторон на наковальне небольшим молоточком. Со стороны монтажа расклёпывать следует заподлицо с платой, что бы выступающая шляпка заклёпки не мешала распайке деталей.

Может показаться странным совет, делать теплоотвод именно от 8-го вывода микросхемы, но краш-тест корпуса неисправной микросхемы показал, что вся её силовая часть расположена на широкой медной пластинке с цельным отводом на 8-й вывод корпуса. Выводы 1 и 2 микросхемы хотя и выполнены в виде полосок, но слишком тонких для использования их в качестве теплоотвода. Все остальные выводы корпуса соединяются с кристаллом микросхемы тонкими проволочными перемычками. Интересно, что не все микросхемы выполнены таким образом. Прверенные ещё несколько корпусов показали, что кристалл расположен в центе, а полосковые выводы микросхемы все одинаковые. Распайка — проволочными перемычками. По этому для проверки нужно «разобрать» ещё несколько корпусов микросхемы…

Теплоотвод ещё можно выполнить из медной (стальной, алюминиевой) прямоугольной пластины толщиной 0,5-1мм с размерами, не выходящими за пределы платы. При использовании DIP корпуса площадь пластины ограничивается только высотой дросселя. Между пластиной и корпусом микросхемы следует положить немного термопасты. При корпусе SO-8 плотному прилеганию пластины иногда могут препятствовать некоторые детали монтажа (конденсаторы и диод). В этом случае вместо термопасты лучше поставить Номакон-овскую резиновую прокладку подходящей толщины. Желательно припаять 8-й вывод микросхемы к этой пластине проволочной перемычкой.

Если охлаждающая пластина имеет большие размеры и закрывает прямой доступ к 8-му выводу микросхемы, то нужно предварительно просверлить в пластине отверстие напротив 8-го вывода, а к самому выводу предварительно припаять вертикально кусочек провода. Затем, продев провод в отверстие пластины и прижав её к корпусу микросхемы, спаять их вместе.

Сейчас доступен хороший флюс для пайки алюминия, поэтому теплоотвод лучше сделать из него. В этом случае теплоотвод можно согнуть по профилю с наибольшей площадью поверхности.

Для получения токов нагрузки до 1,5А теплоотвод следует делать с обеих сторон – в виде сплошного полигона с обратной стороны платы и в виде металлической пластины, прижатой к корпусу микросхемы. При этом обязательна пайка 8-го вывода микросхемы как к полигону на обратной стороне, так и к пластине, прижатой к корпусу. Для увеличения тепловой инерции теплоотвода с обратной стороны платы, его так же лучше выполнить в виде пластины, припаянной к полигону. В этом случае удобно теплоотводящую пластину посадить на заклёпку у 8-го вывода микросхемы, ранее соединявшей обе стороны платы. Заклёпку и пластину пропаять, и прихватить её пайкой в нескольких местах по периметру платы.

Кстати, при использовании пластины с обратной стороны платы, сама плата может быть выполнена уже из одностороннего фольгированного текстолита.

Надписи на плате позиционных обозначений элементов выполнены обычным способом (как и печатные дорожки) кроме надписей на полигонах. Последние выполнены на служебном слое «Ф» белого цвета. В этом случае эти надписи получаются вытравливанием.

Провода питания и светодиодов припаиваются с противоположных торцов платы согласно надписям: «+» и «-» — для питания, «А» и «К» — для светодиодов.

При использовании платы в безкорпусном варианте (после проверки и настройки) удобно продеть её в кусочек термоусадочной трубки подходящей длины и диаметра и прогреть феном. Торцы ещё не остывшей термоусадки нужно обжать плоскогубцами поближе к выводам. Обжатая на горячую термоусадка склеивается и образует почти герметичный и достаточно прочный корпус. Обжатые края склеиваются на столько прочно, что при попытке рассоединения термоусадка просто рвётся. В то же время, при необходимости ремонта-обслуживания, обжатые места сами расклеиваются при повторном нагревании феном не оставляя даже следов обжатия. При некоторой сноровке ещё горячую термоусадку можно растянуть пинцетом и аккуратно вынуть из неё плату. В результате, термоусадка окажется пригодной для повторного корпусирования платы.

При необходимости полной герметизации платы, после обжатия термусадки её торцы можно залить термокоеем. Для усиления «корпуса» можно одеть на плату два слоя термоусадки. Хотя и один слой оказывается достаточно прочным.


Дата добавления: 2021-07-19; просмотров: 49; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!