Принцип работы на переменном напряжении



    Так же, как в механике масса обладает свойством инерции, в электричестве заряд в конденсаторе тоже проявляет инерционность. Действительно, при любых электрических процессах он начинает подзаряжаться (если напряжение на его контактах имеет такую же полярность, как и заряд в нем) или разряжаться (если полярность противоположная). Это влияет на картину токов в цепи, а на синусоидальном токе проявляется как сдвиг фазы между напряжением и током.

    Фактически в цепи переменного тока непрерывно происходит переходный процесс.

                       Конденсатор в цепи переменного тока

Процессы в конденсаторе

Переменное напряжение U то подзаряжает, то разряжает конденсатор, в результате этого в нем течет ток I, сдвинутый по времени на 90° от периода колебаний напряжения.

Xc=1/ωc

    Считается, что конденсатор пропускает переменный ток, причем введен параметр «кажущееся сопротивление конденсатора». Он зависит от емкости конденсатора С и от частоты переменного напряжения ω.

    Это реактивное сопротивление, которое используется в расчетах цепей, содержащих инерционные, реактивные компоненты. То есть везде, где применяются конденсаторы и катушки индуктивности.

    Из рассмотренных свойств ясно, что нужны конденсаторы не как источники электрического питания, а именно как реактивные элементы схем, чтобы создавать определенные режимы переменного/импульсного тока.

Области применения

 - в выпрямителях служат для сглаживания пульсаций тока;

 - в фильтрах (совместно с резисторами и/или индуктивностями) выступают в роли частотно зависимого элемента для выделения или гашения определенной полосы частот;

 - в колебательных контурах используется конденсатор, работающий при генерации синусоидального напряжения;

 - несут функцию накопителя в устройствах, где нужно обеспечить мгновенное выделение большой энергии в виде импульса — например, в фотовспышках, лазерах и т.д;

 - используются в схемах точного управления временными событиями с использованием простейших по строению RC-цепей — реле времени, генераторы одиночных импульсов и т.д;

 - фазосдвигающий конденсатор применяется в схемах питания синхронных и асинхронных, а также однофазных и трехфазных двигателей переменного тока;

 - в качестве емкостных датчиков;

 - в качестве компенсаторов реактивной мощности.

 

    2. Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки. Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

   Соединение звездой
Если, как показано на рис. 1, концы всех обмоток соединены вместе, получаем соединение звездой.

Рис.1

Точка соединения называется нулевой точкой, или просто нулем. В этом случае нагрузка может быть соединена с генератором с помощью трех или четырёх проводов. На рис.2 показаны оба эти случая.

Рис.2


    Провода, идущие от начала обмоток генератора, называют линейным, а провод, выведенный от нулевой точки,—нулевым. Напряжение между одним из линейных проводов и нулевым проводом называется фазным напряжением. Фазные напряжения (Uф) обозначаются U1, U2 и U3. Пренебрегая падением напряжения внутри обмоток трехфазного генератора, можно считать, что фазные напряжения равны фазным э. д. с. Таким образом, фазные напряжения равны по величине и сдвинуты относительно друг друга на угол

    На рис.3 приведены векторная и развернутая диаграммы фазных напряжений. Напряжения между линейными проводами называются линейными напряжениями. Линейные напряжения (Uл) обозначаются U1-2, U2-3 и U3-1.

                                                   Рис.3

  Рассмотрим зависимость между линейным и фазным напряжениями. На рис.2, а вольтметр включен между 1 и 2 линейными проводами и показывает линейное напряжение U1-2. Обходя контур, состоящий из двух фаз обмотки генератора и вольтметра, можем составить уравнение второго закона Кирхгофа в комплексной форме:

E1-E2=U1-2 Знак минус перед Е2 взят потому, что направление обхода фазы 1 — от конца к началу, а фазы 2 — от начала к концу. Считая Е1≈U1 и E2≈U2 можем написать U1-2=U1-U2. (2) Аналогично U2-3=U2-U3 (3); U3-1=U3-U1(4).

Вычитание комплексов напряжений удобно произвести на векторной диаграмме (рис.4).


Рис.4


   Как известно, по правилам векторного сложения для получения суммы двух векторов нужно из конца первого вектора провести вектор, равный и параллельный второму, и тогда вектор, соединяющий начало первого вектора с концом второго, будет представлять собой векторную сумму. В случае вычитания из конца первого вектора проводится вектор, равный по величине второму, но сдвинутый относительно него на 180°. Полученные на диаграмме треугольники представляют собой равнобедренные треугольники с боковой стороной, равной величине фазного напряжения, и углом при вершине, равным 120° (рис.5).

                                          Рис.5

Углы при основании треугольника будут, очевидно, равны 30°.Из треугольника следует

Следовательно, линейные напряжения в трехфазной системе, соединенной звездой, в √3 раз больше фазных напряжений. Линейные напряжения, так же как и фазные, сдвинуты относительно друг друга по фазе на 120°, причем напряжение U1-2 опережает напряжение U1 на 30°, соответственно напряжение U2-3 опережает на 30° напряжение U2, а напряжение U3-1— напряжение U3.
Низковольтные электросети работают либо с линейным напряжением 380 в, либо с линейным напряжением 220 в. При этом фазные напряжения составляют:
1) при линейном напряжении 380 в

2) при линейном напряжении 220 в

Так как при соединении звездой конец фазной обмотки непосредственно соединен с линейным проводом, то величина линейного тока равна величине тока соответствующей фазы, т. е. Iл=Iф

                      Соединение треугольником
Обмотки трехфазного генератора могут быть соединены и другим способом: если конец первой обмотки соединить с началом второй, конец второй обмотки — с началом третьей и конец третьей — с началом первой, получим соединение треугольником (рис.6).

                                           Рис.6

Рассматривая рис.6, мы видим, что обмотки генератора образуют замкнутую последовательную цепь. На первый взгляд создается впечатление, что они замкнуты накоротко, однако фактически короткого замыкания нет, так как сумма э. д. с, действующих в этом замкнутом контуре, в любой момент времени равна нулю, что показано на векторной диаграмме (рис.6). Другое дело, если при соединении спутать концы одной из обмоток (рис.7), тогда фаза соответствующего фазного напряжения опрокинется на 180°и результирующее напряжение, действующее внутри треугольника обмоток, будет равно удвоенной величине фазного напряжения:

векторная сумма Uф1 + Uф3 = Uф2

и общее напряжение U= Uф1+ Uф2+ Uф3=2Uф2

                                          Рис.7


Линейные провода при соединении треугольником отводятся от точек соединения обмоток. Очевидно, что напряжение между линейными проводами в этом случае равно напряжению фазы, включенной между этими проводами. Таким образом, если обмотки генератора соединены треугольником, линейное напряжение равно фазному, т. е.

Uл=Uф

Рассмотрим теперь зависимость между линейными и фазными токами. Если нагрузка равномерна (т. е. если комплексы сопротивлений, включенных на стороне потребителя в каждую из фаз, равны), то фазные токи в каждой из фаз генератора будут равны по величине и сдвинуты относительно друг друга на 120°. На рис.8 показаны обмотки трехфазного генератора, соединенные треугольником, и векторная диаграмма напряжений и токов для данного случая. Примем за положительное направление тока в обмотке направление против часовой стрелки, а за положительное направление тока в линии— направление от генератора к потребителю        

                                                             Рис.8

Напишем в комплексной форме уравнения первого закона Кирхгофа для узлов I, II и III:

Iл1=Iф1-Iф3; Iл2=Iф2-Iф1; Iл3=Iф3-Iф1,

т. е. линейный ток равен геометрической разности токов двух фаз, сходящихся в точке включения данного линейного провода. Произведем вычитание комплексов токов на векторной диаграмме. Фазные токи, как мы уже условились, взяты равной величины и сдвинуты от своих фазных напряжений на одинаковые, углы (φ). Техника вычитания не отличается от рассмотренной нами при определении величины линейного напряжения для системы с соединением обмоток генератора звездой. Для того чтобы не усложнять рисунок, мы показали на нем только определение линейного тока Iл1
Из построения очевидно, что величина Iл=Iф√3, т. е. при соединении обмоток генератора треугольником величина линейного, тока больше величины фазного тока в √3 раз.
Необходимо подчеркнуть, что эта зависимость имеет место только при равномерной нагрузке фаз. Из сравнения двух способов соединения обмоток генераторов следует, что при соединении звездой увеличивается напряжение между проводами линии передачи, но (при одинаковой нагрузке) уменьшаются линейные токи. При соединении обмоток треугольником не может быть проложен нулевой провод между генератором и потребителем, что создает значительные неудобства при неравномерной нагрузке фаз. Поэтому в распределительных сетях низкого напряжения вторичные обмотки силовых трансформаторов, как правило, соединяются звездой.

              Звезда и треугольник. Подключение двигателей.

    Вот всем известные схемы подключения треугольником (D) и звездой (Y):


    Всего с двигателя выходит 6 проводов: это начала трёх обмоток и их концы. Места соединений обмоток на схеме выше обозначены точками a, b, c и 0 (последний - только для звезды). В клеммной коробке шесть указанных клемм располагают в два ряда по три клеммы, причём клеммы начала и концов обмоток не находятся параллельно друг другу, а расположены так, чтобы было удобнее подключать треугольником (т.е. соединять начала одних обмоток с концами других):

Плюсы и минусы «звезды»

    Общую точку, в которой соединяются все оконечности обмотки, называют нейтралью. Если в электроцепи присутствует нейтральный проводник, то она будет называться четырехпроводной. Начало контактов подключается к соответствующим фазам сети питания. Схема соединения обмоток электродвигателя «звезда» имеет ряд преимуществ:

  • Обеспечивается длительная безостановочная работа электромотора.
  • Из-за снижения мощности увеличивается срок эксплуатации агрегата.
  • Достигается плавный пуск.
  • Во время работы не наблюдается сильного перегрева двигателя.

Встречается оборудование, имеющее внутреннее соединение оконечностей обмотки и в коробку выведено лишь три контакта. В такой ситуации использование иной схемы соединения, кроме «звезды», не представляется возможным.


Дата добавления: 2021-07-19; просмотров: 57; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!