Шаг к созданию искусственной жизни



Филипп Холлиджер, ведущий автор исследования, в статье в Science утверждает: их работа доказала, что два отличительных признака жизни – наследственность и развитие – содержатся в XNA, следовательно, соединения XNA являются возможными альтернативами естественному генетическому материалу.

Витор Пинейро, соавтор эксперимента, заявил, что исследование поможет ученым понять, как ДНК и РНК стали основой при возникновении и развитии жизни, и, возможно, даже помочь в поиске внеземных организмов.

В сопровождающей статье Джеральд Джойс из Научно-исследовательского института Scripps в Ла-Хойе, Калифорния, говорит, что исследование объявило «эру синтетической генетики с применениями для экзобиологии (науки, имеющей дело с внеземной жизнью) и биотехнологии». Он добавляет: «Строительство генетических систем, основанных на альтернативных химических платформах, может, в конечном счете, привести к синтезу новых форм жизни».

Кроме того, ученые прогнозируют, что новые нуклеиновые кислоты могут весьма пригодиться в биотехнологии и медицине. Здесь изюминка в том, что они совершенно «незнакомы» ни одному стандартному ферменту, ускоряющему реакции в клетках. Это значит, что ксено-нуклеиновые кислоты необычайно устойчивы: попав в клетку, они способны оставаться в нерасщеплённом состоянии очень долгое время. Лекарства и вакцины, укреплённые такими «вечными» ксенонуклеиновыми кислотами, могут стать в несколько раз более эффективными, чем существующие «естественные» аналоги.

 

 

Нуклеиновые кислоты и синтез белка

ДНК существует в виде двух нитей, или цепей, закрученных в двойную спираль. Каждая цепь представляет собой линейный полимер, построенный из нуклеотидов четырех типов. В состав каждого нуклеотида входят одно азотистое основание (аденин, гуанин, цитозин или тимин), сахар (дезокси- рибоза) и остаток фосфорной кислоты. Участок молекулы ДНК, кодирующий полную аминокислотную последовательность какого-нибудь белка, называется геном. Порядок расположения иуклеотидов в той или иной цепи ДНК определяет ту генетическую информацию, которую несет данная молекула (подобно тому как буквы в каком-нибудь слове определяют его смысл). Если обозначить нуклеотиды (по соответствующим азотистым основаниям) как A, G, С и Т, то сказанное будет означать, что последовательности —ACGT—, AGCT— и ATCG — содержат разную генетическую информацию.

Информация, заключенная в клеточной ДНК, выполняет в клетке две важные функции. Во-первых, она обеспечивает непрерывность ДНК от клетки в клетке, поскольку ДНК играет роль матрицы также и при своем собственном воспроизведении. Во-вторых, эта информация используется для синтеза специфичных клеточных белков при участии промежуточных продуктов— разных типов рибонуклеиновых кислот (РНК). РНК отличается от ДНК тем, что входящий в ее состав сахар (рибоза) содержит на один атом кислорода больше, чем дезоксирибоза ДНК. Однако это на первый взгляд незначительное различие приводит к весьма существенным различиям в конфигурации и геометрии молекул этих двух нуклеиновых кислот.

В составе двойной спирали две цепи молекулы ДНК тесно закручены одна вокруг другой и потому неспособны участвовать в синтезе, но если спираль раскручивается, то способность к синтезу реализуется, причем проявляться она может по-раз- ному. В присутствии фермента ДНК-полимеразы и смеси четырех дезоксирибонуклеотидов (в форме, богатой энергией, а именно в форме соответствующих трифосфатов) синтезируется новая цепь ДНК, комплементарная существующей. На другом этапе клеточного цикла в присутствии РНК-полимеразы и смеси четырех рибонуклеотидов (также в форме трифосфатов) на той же ДНК-матрнце вместо ДНК синтезируется РНК. Единственное различие в кодировании оснований заключается в том, что при синтезе РНК в строящуюся цепь вместо тимина, присутствующего в ДНК. включается урацил (U). Таким образом, водородные связи А—Т, характерные для ДНК, заменяются в РНК связями А—U; связи G—С присутствуют в молекулах обеих этих нуклеиновых кислот ( 2.11).

На ДНК-матрице синтезируются три вида РНК. Рибосомная РНК (рРНК) входит вместе с белком в состав рибосом — клеточных органелл, состоящих из двух разных по величине половинок, имеющих форму сплюснутых сфер, прижатых одна к другой. Рибосомы прикрепляются к матричной (информационной) РНК (мРНК) меньшей своей субъединицей; группа таких рибосом, прикрепившаяся к нити мРНК, образует полирибосому (или полисому), которая представляет собой не что иное, как готовый к действию аппарат белкового синтеза. Правильное расположение аминокислот в молекуле синтезируемого белка обеспечивается тем, что каждая из 20 аминокислот присоединяется сначала к молекуле особой, специфичной именно для данной аминокислоты, транспортной РНК (тРНК). Имеющаяся в ключевом участке этой молекулы тРНК последовательность из трех нуклеотидов «узнает» (путем образования водородных связей) комплементарный ей нуклеотидный триплет в связанной с рибосомами цепи мРНК и прикрепляется к цепи именно в этой точке. Таким образом, нагруженные аминокислотами тРНК доставляют эти аминокислоты к растущей линейной последовательности соединенных друг с другом аминокислот (т. е. к вновь синтезируемому белку) в совершенно определенном порядке. Доставив аминокислоту на место, специфичная тРНК отделяется от нее и опять оказывается готовой для очередного цикла переноса аминокислоты. В определенной точке цепи мРНК имеется «стоп-сигнал»— нуклеотидный триплет, обрывающий синтез и вызывающий отделение готового белка от рибосомы. Каждая из единиц этого ансамбля (рибосома, тРНК, мРНК) может участвовать в таком цикле много раз подряд, хотя все они, разумеется, в конечном счете обречены на распад и, значит, периодически должны обновляться.

 

 

Транскрипция

Транскрипция – синтез РНК на ДНК, то есть синтез комплементарной нити РНК на молекуле ДНК осуществляется ферментом РНК-полимеразой. У бактерий, например, кишечной палочки – одна РНК-полимераза, и все бактериальные ферменты очень похожи друг на друга ; у высших организмов (эукариотов) – несколько ферментов, они называются РНК-полимераза I, РНК-полимераза II, РНК-полимераза III, они также имеют сходство с бактериальными ферментами, но устроены сложнее, в их состав входит больше белков. Каждый вид эукариотической РНК-полимеразы обладает своими специальными функциями, то есть транскрибирует определенный набор генов. Нить ДНК, которая служит матрицей для синтеза РНК при транскрипции называется смысловой или матричной. Вторая нить ДНК называется некодирующей (комплементарная ей РНК не кодирует белки, она "бессмысленная").

В процессе транскрипции можно выделить три этапа. Первый этап - инициация транскрипции – начало синтеза нити РНК, образуется первая связь между нуклеотидами. Затем идет наращивание нити, ее удлинение – элонгация, и, когда синтез завершен, происходит терминация, освобождение синтезированной РНК. РНК-полимераза при этом «слезает» с ДНК и готова к новому циклу транскрипции. Бактериальная РНК-полимераза изучена очень подробно. Она состоит из нескольких белковых-субъединиц: двух α-субъединиц (это маленькие субъединицы), β- и β΄-субъединиц (большие субъединицы) и ω-субъединицы. Вместе они образуют так называемый минимальный фермент, или кор-фермент. К этому кор-ферменту может присоединяться σ-субъединица. σ-субъединица необходима для начала синтеза РНК, для инициации транскрипции. После того, как инициация осуществилась, σ-субъединица отсоединяется от комплекса, и дальнейшую работу (элонгацию цепи) ведет кор-фермент. При присоединении к ДНК σ-субъединица распознает участок, на котором должна начинаться транскрипция. Он называется промотор. Промотор - это последовательность нуклеотидов, указывающих на начало синтеза РНК. Без σ-субъединицы кор-фермент промотор распознать не может. σ-субъединица вместе с кор-ферментом называется полным ферментом, или холоферментом.

Связавшись с ДНК, а именно с промотором, который распознала σ-субъединица, холофермент расплетает двунитевую спираль и начинает синтез РНК. Участок расплетенной ДНК – это точка инициации транскрипции, первый нуклеотид, к которому должен комплементарно быть присоединен рибонуклеотид. Инициируется транскрипция, σ-субъединица уходит, а кор-фермент продолжает элонгацию цепи РНК. Затем происходит терминация, кор-фермент освобождается и становится готов к новому циклу синтеза.

 

                      Источники

Краснодембский Е. Г."Общая биология: Пособие для старшеклассников и поступающих в вузы"

Википедия – раздел нуклеиновых кислот

 

Реутов О. А., Курц А. Л., Бутин К. П. «Органическая химия»

 

Робертс Дж., Касерио М. , «Основы органической химии»

 

Аппель Б., Бенеке И., Бенсон Я., под ред. С. Мюллер. Нуклеиновые кислоты от А до Я


Дата добавления: 2021-03-18; просмотров: 103; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!