ОТЛИЧИЕ ЭС ОТ ТРАДИЦИОННЫХ ПРОГРАММ



Еще один способ определить ЭС — это сравнить их с обычными программами. Главное различие состоит в том, что ЭС манипулируют знаниями, тогда как обычные программы манипулируют данными. Фирма Teknowledge, которая занимается производством коммерческих экспертных систем, описывает эти различия, как показано в

тяйп П 9

В §13 4 обсуждалось, как экспертные системы используют эвристики и механизм вывода, и рассмотрены некоторые из общих методов представления знаний

Таблица 13 2

Обработка данных   Инженерия знаний  
Представление и использование данных Алгоритмы Повторный прогон Эффективная обработка больших баз данных   Представление и использование знаний Эвристики Процесс логического вывода Эффективная обработка баз знаний  

 

Специалисты в области ИИ имеют несколько более узкое (и более сложное) представление о том, что такое ЭС Под экспертной системой понимается программа для ЭВМ, обладающая свойствами, изображенными на рис 13 6

Рассмотрим эти характеристики более подробно

Компетентность. Экспертная система должна демонстрировать компетентность, т е достигать в конкретной предметной области того же уровня профессионализма, что и эксперты-люди Но просто уметь находить хорошие решения еще недостаточно Настоящие эксперты не только находят хорошие решения, но часто находят их очень быстро, тогда как новичкам для нахождения тех же решений,

Рис 136 Особенности ЭС отличающие ее от обычных программ

как правило, требуется намного больше времени. Следовательно, ЭС должна быть умелой — она должна применять знания для получения решений эффективно и быстро, используя приемы и ухищрения, какие применяют эксперты-люди, чтобы избежать громоздких или ненужных вычислений Для того чтобы по-настоящему подражать поведению эксперта-человека, ЭС должна обладать робастностью Это подразумевает не только глубокое, но и достаточно широкое понимание предмета. А этого можно достичь, используя общие знания и методы нахождения решений проблем, чтобы уметь рассуждать исходя из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Это один из наименее разработанных методов в современных ЭС, но именно им успешно пользуются эксперты-люди.

Символьные рассуждения. Эксперты, решая какие-то задачи (особенно такого типа, для решения которых применяются ЭС), обходятся без решения систем уравнений или других трудоемких математических вычислений. Вместо этого они с помощью символов представляют понятия предметной области и применяют различные стратегии и эвристики в процессе манипулирования этими понятиями. В ЭС знания тоже представляются в символьном виде, т. е. наборами символов, соответствующих понятиям предметной области. На жаргоне ИИ символ — это строка знаков, соответствующая содержанию некоторого понятия реального мира.

Примеры символов:

продукт

ответчик

08

Эти символы можно объединить, чтобы выразить отношения между ними. Когда эти отношения представлены в программе ИИ, они называются символьными структурами

Примеры символьных структур:

(ДЕФЕКТНЫЙ продукт) (ВЫПУЩЕННЫЙ ответчиком продукт) (РАВНО (ОТВЕТСТВЕННОСТЬ ответчик) 0 8)

Эти структуры можно интерпретировать следующим образом «продукт является дефектным», «продукт был выпущен в продажу ответчиком» и «ответственность ответчика равна 0.8».

При решении задачи ЭС вместо выполнения стандартных математических вычислений манипулирует этими символами Нельзя ска-

зать, что ЭС вообще не производит математических расчетов, она их делает, но в основном она приспособлена для манипулирования символами. Вследствие подобного подхода представление знаний — выбор, форма и интерпретация используемых символов — становится очень важным. Кроме того, эксперты могут получить задачу, сформулированную неким произвольным образом, и преобразовать ее к тому виду, который в наибольшей степени соответствует быстрому получению решения или гарантирует его максимальную эффективность. Эта способность переформулирования задачи — как раз то свойство, которое должно быть присуще ЭС для того, чтобы приблизить их мастерство к уровню экспертов-людей. К сожалению, большинство существующих в настоящее время ЭС не обладают этим свойством.

Глубина. Экспертная система должна иметь глубокие знания; это значит, что она способна работать эффективно в узкой предметной области, содержащей трудные, нетривиальные задачи. Поэтому правила в ЭС с необходимостью должны быть сложными либо в смысле сложности каждого правила, либо в смысле их обилия. Экспертные системы, как правило, работают с предметными областями реального мира, а не с тем, что специалисты в области ИИ называют игрушечными предметными областями. В предметной области реального мира тот, кто решает задачу, применяет фактическую информацию к практической проблеме и находит решения, которые являются ценными с точки зрения некоторого критерия, определяющего соотношение стоимости и эффективности. В игрушечной предметной области либо задача подвергается чрезвычайному упрощению, либо производится нереалистическая адаптация некоторой сложной проблемы реального мира. Тот, кто решает такую проблему, обрабатывает искусственную информацию, которая в целях облегчения решения упрощена и порождает решения, имеющие чисто теоретический интерес.

В тех случаях, когда по отношению к сложной задаче или данным о ней сделаны существенные упрощения, полученное решение может оказаться неприменимым в масштабах, которые характерны для реальной проблемы. Рекомендации, методы представления знаний, организация знаний, необходимые для применения методов решения задач к этим знаниям, часто связаны с объемом и сложностью пространства поиска, т.е. множества возможных промежуточных и окончательных решений задачи. Если проблема сверхупрощена или нереалистична, то размерность пространства поиска будет, скорее

всего, резко уменьшена, и не возникнет проблем с быстродействием и эффективностью, столь характерных для реальных задач. Эта проблема размерности возникает столь естественно и неуловимо, что даже искушенные в ИИ специалисты могут не оценить ее истинные масштабы.

Самосознание. Экспертные системы имеют знания, позволяющие им рассуждать об их собственных действиях, и структуру, упрощающую такие рассуждения. Например, если ЭС основана на правилах, то ей легко просмотреть цепочки выводов, которые она порождает, чтобы прийти к решению задачи. Если заданы еще и специальные правила, из которых ясно, что можно сделать с этими цепочками выводов, то можно использовать эти знания для проверки точности, устойчивости и правдоподобия решений задачи и даже построить доводы, оправдывающие или объясняющие процесс рассуждения. Это знание системы о том, как она рассуждает, называется метазнанием , что означает всего лишь знания о знаниях.

У большинства ныне существующих ЭС есть так называемый механизм объяснения. Это знания, необходимые для объяснения того, каким образом система пришла к данным решениям. Большинство этих объяснений включают демонстрацию цепочек выводов и доводов, объясняющих, на каком основании было применено каждое правило в цепочке. Возможность проверять собственные процессы рассуждения и объяснять свои действия — это одно из самых новаторских и важных свойств ЭС. Но почему это свойство так важно?

«Самосознание» так важно для ЭС потому, что:

пользователи начинают больше доверять результатам, испытывать большую уверенность в системе;

ускоряется развитие системы, так как систему легче отлаживать;

предположения, положенные в основу работы системы, становятся явными, а не подразумеваемыми;

легче предсказывать и выявлять влияние изменений на работу системы.

Умение объяснить — это всего лишь один из аспектов самосознания. В будущем самосознание позволит ЭС делать даже больше. Они сами смогут создавать обоснования отдельных правил путем рассуждения, исходящего из основных принципов. Они будут приспосабливать свои объяснения к требованиям пользователя. Они смогут изменять собственную внутреннюю структуру путем коррекции правил, реорганизации базы знаний и реконфигурации системы.

Первый шаг в этом направлении — выделить метазнания и сделать их явными, точно так же как знания о предметной области выделены и сделаны явными. Ниже приведен пример метазнания — знания о том, как использовать предметные знания.

ЕСЛИ: к данной ситуации применимо несколько правил,

ТО: использовать сначала правила, предложенные экспертами, прежде чем прибегнуть к правилам, предложенным новичками.

Это метаправило говорит ЭС, каким образом она должна выбирать те правила, которые надо выполнить. Специалисты по ИИ еще только начинают экспериментировать с формами представления метазнаний и их организацией в ЭС.

Экспертные системы делают ошибки. Существует еще одно очень важное отличие ЭС от традиционных программ. Тогда как традиционные программы разрабатываются таким образом, чтобы каждый раз порождать правильный результат, ЭС разработаны с тем, чтобы вести себя как эксперты, которые, как правило, дают правильные ответы, но иногда способны ошибаться.

На первый взгляд кажется, что в этом отношении традиционные программы имеют явное преимущество. Однако это преимущество кажущееся. Традиционные программы для решения сложных задач, напоминающих те, которые подходят для ЭС, тоже могут делать ошибки. Но их ошибки чрезвычайно трудно исправлять, поскольку стратегии, эвристики и принципы, лежащие в основе этих программ, явно не сформулированы в их тексте. Следовательно, эти ошибки нелегко определить и исправить. Подобно своим двойникам-людям ЭС могут делать ошибки. Но в отличие от обычных программ, они имеют потенциальную способность учиться на своих ошибках. С помощью компетентных пользователей можно заставить экспертные системы совершенствовать свое умение решать задачи в ходе практической работы.

ВИДЫ ЭС

Можно расширить понимание экспертных систем, рассмотрев некоторые наиболее характерные их применения. В настоящем параграфе опишем эти. применения в двух аспектах — основные виды деятельности ЭС и области, в которых они решают проблемы. Взятые в совокупности, эти аспекты позволяют увидеть широту диапазона применения, многообразие информации и разнообразие форм представления знаний, присущие существующим ЭС.

Экспертные системы создаются для решения разного рода проблем, но основные типы их деятельности можно сгруппировать в категории, приведенные в табл. 13.3.

ЭС, выполняющие интерпретацию, как правило, используют информацию от датчиков для описания ситуации. В качестве примера приведем интерпретацию показаний измерительных приборов на химическом заводе для определения состояния процесса. Интерпретирующие системы имеют дело не с четкими символьными представлениями проблемной ситуации, а непосредственно с реальными данными. Они сталкиваются с затруднениями, которых нет у систем других типов, потому что им приходится обрабатывать информацию зашумленную, недостаточную, неполную, ненадежную или ошибочную. Им необходимы специальные методы регистрации характеристик непрерывных потоков данных, сигналов или изображений и методы их символьного представления.

Таблица 13.3

Категория   Решаемая проблема  
Интерпретация   Описание ситуации по информации, поступающей от датчиков  
Прогноз   Определение вероятных последствий заданных ситуаций  
Диагностика   Выявление причин неправильного функционирования системы по результатам наблюдений  
Проектирование   Построение конфигураций объектов при заданных ограничениях  
Планирование   Определение последовательности действий  
Наблюдение   Сравнение результатов наблюдений с ожидаемыми результатами  
Отладка   Составление рецептов исправления неправильного функционирования системы  
Ремонт   Выполнение последовательности предписанных исправлений  
Обучение   Диагностика, отладка и исправление поведения обучаемого  
Управление   Управление поведением системы как целого  

 

Интерпретирующие ЭС могут обработать разнообразные виды данных. Например, системы анализа сцен и распознавания речи, используя естественную информацию, — в одном случае визуальные образы, в другом — звуковые сигналы — анализируют их характери-

стики и понимают их смысл. Интерпретация в области химии использует данные дифракции рентгеновских лучей, спектрального анализа или ядерно-магнитного резонанса для вывода химической структуры веществ. Интерпретирующая система в геологии использует каротажное зондирование — измерение проводимости горных пород в буровых скважинах и вокруг них, — чтобы определить подповерхно-стные геологические структуры. Медицинские интерпретирующие системы используют показания следящих систем (например, значения пульса, кровяного давления), чтобы установить диагноз или тяжесть заболевания. Наконец, в военном деле интерпретирующие системы используют данные от радаров, радиосвязи и сонарных устройств, чтобы оценить ситуацию и идентифицировать цели.

ЭС, осуществляющие прогноз, определяют вероятные последствия заданных ситуаций. Примерами служат прогноз ущерба урожаю от некоторого вида вредных насекомых, оценивание спроса на нефть на мировом рынке в зависимости от складывающейся геополитической ситуации и прогнозирование места возникновения следующего вооруженного конфликта на основании данных разведки. Системы прогнозирования иногда используют имитационное моделирование, т.е. программы, которые отражают причинно-следственные взаимосвязи в реальном мире, чтобы сгенерировать ситуации или сценарии, которые могут возникнуть при тех или иных входных данных. Эти возможные ситуации вместе со знаниями о процессах, порождающих эти ситуации, образуют предпосылки для прогноза. Специалисты ИИ пока что разработали сравнительно мало прогнозирующих систем, возможно потому, что очень трудно взаимодействовать с имитационными моделями и создавать их.

Экспертные системы выполняют диагностирование, используя описания ситуаций, характеристики поведения или знания о конструкции компонент, чтобы установить вероятные причины неправильного функционирования диагностируемой системы. Примерами служат: определение причин заболевания по симптомам, наблюдаемым у пациентов; локализация неисправностей в электронных схемах и определение неисправных компонент в системе охлаждения ядерных реакторов. Диагностические системы часто являются консультантами, которые не только ставят диагноз, но также помогают в отладке. Они могут взаимодействовать с пользователем, чтобы оказать помощь при поиске неисправностей, а затем предложить порядок дей

ствий по их устранению. Медицина представляется вполне естественной областью для диагностирования, и действительно, в медицинской области было разработано больше диагностических систем, чем в любой другой отдельно взятой предметной области. Однако в настоящее время многие диагностические системы разрабатываются для приложений к инженерному делу и компьютерным системам. Пример правила диагностической системы дается ниже. Система, называемая MYCIN, диагностирует бактериальную инфекцию у госпитализированного больного.

ЕСЛИ: 1) Окраска бактерий грамположительная

2) Морфология бактерий характерна для кокков

3) Форма колоний — цепочки ТО: Есть основания считать (0 7), что вид бактерий—стрептококк.

ЭС, выполняющие проектирование, разрабатывают конфигурации объектов с учетом набора ограничений, присущих проблеме. Примерами могут служить генная инженерия, разработка СБИС и синтез сложных органических молекул. В проектировании систем часто используются синтез для разработки отдельных частей проекта и имитационное моделирование с целью верификации и тестирования идей, заложенных в проект. Учитывая то, что проектирование столь тесно связано с планированием, многие проектирующие системы содержат механизмы разработки и уточнения планов для достижения желаемого проекта. Система проектирования может в значительной мере избежать ненужных поисков, создавая планы разработки желаемой конфигурации и оценивая их в контексте проблемных требований. Две наиболее популярные области применения проектирующих ЭС — молекулярная биология и микроэлектроника. Это может быть связано с заинтересованностью бизнеса в столь перспективных приложениях, а не с некими фундаментальными особенностями этих областей.

ЭС, занятые планированием, проектируют действия; они определяют полную последовательность действий, прежде чем начнется их выполнение. Примерами могут служить создание плана применения последовательности химических реакций к группам атомов с целью синтеза сложных органических соединений или создание плана воздушного нападения, рассчитанного на несколько дней, с целью нейтрализации определенного фактора боеспособности врага. Планирующие ЭС зачастую должны иметь способность к возврату, т.е. отвергать некоторую последовательность рассуждений или часть плана

из-за нарушения ограничений задачи и возвращать управление назад к более ранней точке или ситуации, из которой анализ должен начаться заново. Возврат может дорого стоить, и поэтому в некоторых планирующих системах задача планирования разбивается на под-проблемы и делается попытка упорядочить их так, чтобы избежать перепланирования, начинающегося с точки, в которой был сделан неудачный выбор. Наиболее часто встречающиеся области применения планирующих ЭС — химия, электроника и военное дело.

Экспертные системы, которые осуществляют наблюдение, срав- 1 нивают действительное поведение с ожидаемым поведением системы. Примерами могут служить слежение за показаниями измерительных приборов в ядерных реакторах с целью обнаружения аварийных ситуаций или оценку данных мониторинга больных, помещенных в блоки интенсивной терапии. Наблюдающие ЭС подыскивают наблюдаемое поведение, которое подтверждает их ожидания относительно нормального поведения или их предположения о возможных отклонениях. Наблюдающие ЭС по самой своей природе должны работать в режиме реального времени и осуществлять зависящую как от времени, так и от контекста интерпретацию поведения наблюдаемого объекта. Это может приводить к необходимости запоминать все значения некоторых параметров системы (например, пульса), полученные в различные моменты времени, поскольку скорость и направление изменения могут быть столь же важны, как и действительные его значения в любой момент времени.

ЭС, выполняющие отладку, находят рецепты для исправления неправильного поведения устройств. Примерами могут служить настройка компьютерной системы с целью преодолеть некоторый вид затруднений в ее работе; выбор типа обслуживания, необходимого для устранения неисправностей в телефонном кабеле; выбор ремонтной операции для исправления известной неисправности в локомотиве. Многие существующие отладочные системы работают с простыми таблицами связей между типами неисправностей и предлагаемыми рецептами их исправления, но общая проблема отладки очень трудна и требует проектирования рецептов восстановления и их оценивания через прогнозирование их эффективности. Отладочные системы часто включают диагностические компоненты для определения причин неисправностей. Это особенно характерно для медицинских ЭС, где система ставит диагноз заболевания, а затем производит «отладку», предписывая курс лечения.

ЭС, реализующие ремонт, следуют плану, который предписывает некоторые рецепты восстановления. Примером является настройка масс-спектрометра, т.е. установка ручек регулировки прибора в положение, обеспечивающее достижение оптимальной чувствительности, совместимой с правильным отношением величин пиков и их формы. Пока что было разработано очень мало ремонтных ЭС отчасти потому, что необходимость фактического выполнения ремонтных процедур на объектах реального мира дополнительно усложняет задачу. Ремонтным системам также необходимы диагностирующие, отлаживающие и планирующие процедуры для производства ремонта.

ЭС, выполняющие обучение, подвергают диагностике, «отладке» и исправлению («ремонту») поведение обучаемого. В качестве примеров приведем обучение студентов отысканию неисправностей в электрических цепях, обучение военных моряков обращению с двигателем на корабле и обучение студентов-медиков выбору антимикробной терапии. Обучающие системы создают модель того, что обучающийся знает и как он эти знания применяет к решению проблемы. Системы диагностируют и указывают обучающемуся его ошибки, анализируя модель и строя планы исправлений указанных ошибок. Они исправляют поведение обучающихся, выполняя эти планы с помощью непосредственных указаний обучающимся.

ЭС, осуществляющие управление, адаптивно руководят поведением системы в целом. Примерами служат управление производством и распределением компьютерных систем или контроль за состоянием больных при интенсивной терапии. Управляющие ЭС должны включать наблюдающие компоненты, чтобы отслеживать поведение объекта на протяжении времени, но они могут нуждаться также и в других компонентах для выполнения любых или всех из уже рассмотренных типов задач: интерпретации, прогнозирования, диагностики, проектирования, планирования, отладки, ремонта и обучения. Типичная комбинация задач состоит из наблюдения, диагностики, отладки, планирования и прогноза.

ТИПЫ ЗАДАЧ, РЕШАЕМЫХ ЭС

Хотя основные виды деятельности экспертных систем, перечисленные в табл.13, 3, легко описать, классификация существующих ЭС на основании этих видов деятельности может привести к неясностям, поскольку многие из этих систем выполняют сразу несколько видов работ. Например, диагностика часто совмещается с отладкой, наблюдение с управлением, а планирование с проектированием. По-

этому специалисты по ИИ находят полезным классифицировать ЭС по типам задач, которые такие системы решают. В табл. 13.4 перечислены некоторые из предметных областей, в которых применяются ЭС в настоящее время. Из них медицина представляется наиболее популярной; именно в этой области было разработано больше ЭС, чем во всякой другой, хотя химия ненамного отстает от нее, и разрыв быстро сокращается.

На приведенных ниже семи рисунках вкратце описаны ЭС, представляющие семь наиболее активных областей применения из перечисленных в табл.13.4: химию, компьютерные системы, электронику, инженерное дело, геологию, медицину и военное дело. Указано также, как они связаны с видами работ, перечисленными в табл. 13.3.

Таблица 13 4

Военное дело Геология Инженерное дело Информатика Компьютерные системы Космическая техника Математика Медицина   Метеорология Промышленность Сельское хозяйство Управление процессами Физика Химия Электроника Юриспруденция  

 

В химии работы по экспертным системам начались с новаторского проекта DENDRAL, начатого в Станфордском университете в середине 60-х годов и посвященного разработке методов ИИ для определения топологических структур органических молекул. Современные работы по ЭС в области химии включают вывод структуры молекул, синтез органических молекул и планирование экспериментов в молекулярной биологии (рис. 13.7).

В области компьютерных систем типичным образцом может служить экспертная система XCON, одна из первых и наиболее успешно применяемых разработок этого рода. Она была начата корпорацией DEC и Университетом Карнеги-Меллон в конце 70-х годов как исследовательский проект, а сейчас XCON достигла уровня коммерческой системы и используется для проектирования конфигураций компьютеров. Современные разработки ЭС в этой области связаны с диагностикой неисправностей, проектированием компьютерных конфигураций и управлением процессом производства компьютеров (рис. 13.8).

 

В электронике преобладают исследования и разработки, связанные с диагностикой неисправностей и проектированием СБИС Система AGE, разработанная в начале 80-х годов фирмой Белл, — это типичная диагностическая система в данной области. Она используется для обнаружения неисправностей в телефонной сети и определения их характера В настоящее время работы по ЭС в области электроники связаны с обучающими системами, помогающими находить отказы в электрических цепях и проектировать электронно-цифровые схемы (рис. 13.9).

В инженерном деле типичный образец ЭС — это DELTA, система диагностики неисправностей, разработанная компанией «Дженерал Электрик» в середине 80-х годов. «Дженерал Электрик» планирует использовать DELTA на коммерческой основе для помощи обслуживающему персоналу при поиске неисправностей в дизель-электрических локомотивах В настоящее время разрабатываются другие системы диагностирования неисправностей и обучения операторов сложных систем управления (рис 13.10).

В геологии первой была ЭС PROSPECTOR, разработанная в Станфордском исследовательском институте в середине 70-х годов. Система PROSPECTOR предназначена для помощи геологам в разведке рудных месторождений, и в 1980 г она точно предсказала существование молибденового месторождения, оцененного в многомиллионную сумму

Рис. 13.8. ЭС для приложений к компьютерным системам

В настоящее время разрабатываются ЭС, связанные с каротажем скважин и диагностикой неполадок при их бурении (рис. 13.11 ).

Рис. 13.9. ЭС в электронике

Рис. 13.10.ЭСв инженерном деле

 

В военном деле усилия были сконцентрированы на интерпретации, прогнозировании и планировании. Одна из первых военных ЭС, названная HASP/SIAP, разрабатывалась совместно со Станфордским университетом и System Control Technology в начале 70-х годов. Эта система определяет типы кораблей, интерпретируя данные от сети гидрофонов, прослушивающих некоторые акватории океана. В настоящее время потенциальные военные приложения ЭС включают интерпретацию информации от датчиков, прогноз боевых действий и тактическое планирование (рис. 13.13).

Этот обзор применений ЭС дает очень широкую перспективу того, что ЭС делают и какого рода проблемы решают. В следующем параграфе, напротив, сузим тему и очень подробно рассмотрим одно конкретное приложение.

Рис 1313 ЭС в военном деле


Дата добавления: 2021-03-18; просмотров: 103; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!