Методы рефакторинга при проектировании программных средств



Рефакторинг играет особую роль в качестве дополнения к проектированию. Если заранее подумать об архитектуре программы, то можно избежать последующей дорогостоящей переработки. Многие считают, что проектирование важнее всего, а программирование представляет собой механический процесс. Аналогией проекта служит технический чертеж, а аналогией кода — изготовление узла. Но программа весьма отличается от физического механизма. Она значительно более податлива и целиком связана с обдумыванием. Как говорит Элистер Кокберн (Alistair Cockburn):
«При наличии готового дизайна я думаю очень быстро, но в моем мышлении полно пробелов».

Существует утверждение, что рефакторинг может быть альтернативой предварительному проектированию. В таком сценарии проектирование вообще отсутствует. Первое решение, пришедшее в голову, воплощается в коде, доводится до рабочего состояния, а потом обретает требуемую форму с помощью рефакторинга. Такой подход фактически может действовать. Мне встречались люди, которые так работают и получают в итоге систему с очень хорошей архитектурой. Тех, кто поддерживает «экстремальное программирование» [ Beck , XP ], часто изображают пропагандистами такого подхода.

Подход, ограничивающийся только рефакторингом, применим, но не является самым эффективным. Даже «экстремальные» программисты сначала разрабатывают некую архитектуру будущей системы. Они пробуют разные идеи с помощью CRC-карт или чего-либо подобного, пока не получат внушающего доверия первоначального решения. Только после первого более или менее удачного «выстрела» приступают к кодированию, а затем к рефакторингу. Смысл в том, что при использовании рефакторинга изменяется роль предварительного проектирования. Если не рассчитывать на рефакторинг, то ощущается необходимость как можно лучше провести предварительное проектирование. Возникает чувство, что любые изменения проекта в будущем, если они потребуются, окажутся слишком дорогостоящими. Поэтому в предварительное проектирование вкладывается больше времени и усилий — во избежание таких изменений впоследствии.

С применением рефакторинга акценты смещаются. Предварительное проектирование сохраняется, но теперь оно не имеет целью найти единственно правильное решение. Все, что от него требуется, — это найти приемлемое решение. По мере реализации решения, с углублением понимания задачи становится ясно, что наилучшее решение отличается от того, которое было принято первоначально. Но в этом нет ничего страшного, если в процессе участвует рефакторинг, потому что модификация не обходится слишком дорого.

Рефакторинг предоставляет другой подход к рискам модификации. Возможные изменения все равно надо пытаться предвидеть, как и рассматривать гибкие решения. Но вместо реализации этих гибких решений следует задаться вопросом: «Насколько сложно будет с помощью рефакторинга преобразовать обычное решение в гибкое?» Если, как чаще всего случается, ответ будет «весьма несложно», то надо просто реализовать обычное решение.

Рефакторинг позволяет создавать более простые проекты, не жертвуя гибкостью, благодаря чему процесс проектирования становится более легким и менее напряженным. Научившись в целом распознавать то, что легко поддается рефакторингу, о гибкости решений даже перестаешь задумываться. Появляется уверенность в возможности применения рефакторинга, когда это понадобится. Создаются самые простые решения, которые могут работать, а гибкие и сложные решения по большей части не потребуются.

 

КЛАССИЧЕСКИЕ МЕТОДЫ РАЗРАБОТКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

 

Структурное программирование, языки и среды разработки

Структурное программирование

На всех этапах подготовки к алгоритмизации задачи широко используется структурное представление алгоритма.

C труктурное программирование воплощает принципы системного подхода в процессе создания и эксплуатации программного обеспечения ЭВМ. В основу структурного программирования положены следующие достаточно простые положения:

1. алгоритм и программа должны составляться поэтапно (по шагам).

2. сложная задача должна разбиваться на достаточно простые части, каждая из которых имеет один вход и один выход.

3. логика алгоритма и программы должна опираться на минимальное число достаточно простых базовых управляющих структур.

Структурное программирование иногда называют еще "программированием без GO TO". Рекомендуется избегать употребления оператора перехода всюду, где это возможно, но чтобы это не приводило к слишком громоздким структурированным программам.

 К полезным случаям использования оператора перехода можно отнести выход из цикла или процедуры по особому условию, "досрочно" прекращающего работу данного цикла или данной процедуры, т.е. завершающего работу некоторой структурной единицы (обобщенного оператора) и тем самым лишь локально нарушающего структурированность программы.

Фундаментом структурного программирования является теорема о структурировании. Эта теорема устанавливает, что, как бы сложна ни была задача, схема соответствующей программы всегда может быть представлена с использованием ограниченного числа элементарных управляющих структур. Базовыми элементарными структурами являются структуры: следование, ветвление и повторение (цикл), любой алгоритм может быть реализован в виде композиции этих трех конструкций.

Рис. 5

Первая (а) структура - тип последовательность (или просто последовательность), вторая (б) – структура выбора (ветвление), третья (в) – структура цикла с предусловием.

При словесной записи алгоритма указанные структуры имеют соответственно следующий смысл:

«выполнить ; выполнить »,

если , то выполнить , иначе выполнить »,

«до тех пор, пока , выполнять »,

где - условие; , , - действия.

Применительно к языку Паскаль, в котором наиболее полно нашли свое отражение идеи структурного программирования, целесообразно при проектировании алгоритмов дополнительно использовать еще четыре элементарные структуры: сокращенную запись разветвления (рис. 16, ); структуру варианта (рис. 16, ); структуру повторения или цикла с параметром (рис. 16, ); структуру цикла с постусловием (рис. 6, ). Каждая из этих структур имеет один вход и один выход.

Рис. 6

Ветвящимся (разветвляющимся) называется вычислительный процесс, в котором происходит выбор одного из возможных вариантов вычислений в зависимости от проверки заданных условий.

В зависимости от типа и числа проверяемых условий различают:

- ветвление с простым условием (условие - выражение отношения);

- ветвление с составным условием (условие - логическое выражение);

- сложное ветвление (несколько условий).

Вариант вычислений, определяемый в результате проверки условия, называется ветвью.

Циклическимназывается процесс многократного повторения некоторого участка вычислений при изменении хотя бы одной из входящих в него величин.

Повторяющийся участок вычисления называется циклом. Операции, осуществляемые в цикле, составляют тело цикла.

Величина, изменяющая своё значение от цикла к циклу, называется параметром цикла.

Зависимость, связывающая текущее и предыдущее значения параметра цикла, определяет закон изменения параметра цикла. Зависимость, предписывающая повторение цикла, либо выход из него, называется условием повторения цикла.

Полный однократный проход цикла от начала до конца называется итерацией.

Все циклические процессы по признаку определения количества повторений (М) разделяются на два класса.

Арифметическим называется циклический процесс, число повторений в котором может быть определено заранее, т.е. не зависит от результатов счёта в теле цикла.

Итерационным является циклический процесс, число повторений в котором зависит от результатов вычислений в теле цикла и не может быть определено заранее.

Независимо от того, к какому классу относится вычислительный процесс, каждый из них содержит обязательные элементы:

- вход в цикл (формирование начального значения параметра цикла);

- вычисления в теле цикла (расчёт текущего значения функций, формирования нового значения параметра цикла, а также вспомогательные операции);

- выход из цикла (проверка условия, определяющего повторение вычислений, либо их прекращение).

По своему содержанию эти элементы зависят от класса и особенностей цикла, в котором используются.

В соответствии с видом задания (изменения) параметра цикла арифметические циклы подразделяются на:

- циклы с аналитическим изменением параметра;

- циклы с табличным заданием параметра.

Выполнение арифметических циклов, т.е. многократное вычисление значений функции при изменяющихся значениях аргумента, называется табуляцией функции.

Распространены две методики (стратегии) разработки программ, относящиеся к структурному программированию:

– программирование «сверху вниз»;

– программирование «снизу вверх».

Программирование «сверху вниз», или нисходящее программирование – это методика разработки программ, при которой разработка начинается с определения целей решения проблемы, после чего идет последовательная детализация, заканчивающаяся детальной программой.

Такой подход удобен тем, что позволяет человеку постоянно мыслить на предметном уровне, не опускаясь до конкретных операторов и переменных. Кроме того, появляется возможность некоторые подпрограммы не реализовывать сразу, а временно откладывать, пока не будут закончены другие части.

Программирование «снизу вверх», или восходящее программирование – это методика разработки программ, начинающаяся с разработки подпрограмм (процедур, функций), в то время когда проработка общей схемы не закончилась.

Такая методика является менее предпочтительной по сравнению с нисходящим программированием, так как часто приводит к нежелательным результатам, переделкам и увеличению времени разработки.

Подпрограммы бывают двух видов – процедуры и функции. Процедура просто выполняет группу операторов, а функция вдобавок вычисляет некоторое значение и передает его обратно в главную программу. Это значение имеет определенный тип. Данные передаются подпрограмме в виде параметров или аргументов, которые обычно описываются в ее заголовке так же, как переменные. Подпрограммы вызываются, как правило, путем простой записи их названия с нужными параметрами.

Подпрограммы могут быть вложенными – допускается вызов подпрограммы не только из главной программ, но и из любых других программ.

В некоторых языках программирования допускается вызов подпрограммы из себя самой. Такой прием называется рекурсией и опасен тем, что может привести к зацикливанию – бесконечному самовызову.

Достоинства структурного программирования:

– повышается надежность программ (благодаря хорошему структурированию при проектировании, программа легко поддается тестированию и не создает проблем при отладке);

– повышается эффективность программ (структурирование программы позволяет легко находить и корректировать ошибки, а отдельные подпрограммы можно переделывать (модифицировать) независимо от других);

– уменьшается время и стоимость программной разработки;

– улучшается читабельность программ.

 

 


Дата добавления: 2021-03-18; просмотров: 127; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!