Естественные факторы, влияющие на кислотно-щелочное состояние полости рта



Лекция № 2

Ротовая жидкость

Особенностью ротовой полости является то, что гомеостаз зависит не только от функционирования тканей, анатомических образований ротовой полости, особенностей состава крови, но и от состава и свойств ротовой жидкости.

Ротовая жидкость – это биологическая жидкость, которая кроме секрет слюнных желез, включает микрофлору и продукты ее жизнедеятельности, содержимое пародонтальных карманов, десневую жидкость, десквамированный эпителий, распад мигрирующих в полость рта лейкоцитов, остатки пищевых продуктов и т.д.

В составе слюны выделяют гингивальную (десневую) жид­кость. К ней относят часть слюны, локализованной в десневой борозде. Химический состав и свойства этой жидкости можно ис­пользовать как тонкий индикатор, характеризующий состояние пародонта. По своему составу десневая жидкость отличается от слюны и крови. Она содержит слущенные эпителиальные клетки, лейко­циты, бактерии, электролиты (Na, К, Мg и др.) и ряд органи­ческих веществ (глюкозу, продукты метаболизма). Относитель­но происхождения десневой жидкости существуют различные точки зрения. Одни авторы относят ее к экссудату, так как у здоровых она практически не обнаруживается, другие — к транссудату. Десневая жидкость, постоянно поступая в полость рта из десневой бороздки или пародонтального кармана, противодействует смещению реак­ции среды в зубном налете, камне и ротовой жидкости. рН десневой жид­кости колеблется в среднем от 7,9 до 8,3. Такие значения поддерживаются высоким уровнем мочевины и аммиака. Непрямое нейтрализующее дей­ствие десневой жидкости на кислоты осуществляется за счет ряда активных противомикробных факторов, содержащихся в ней.

Слюна является наименее изученной и самой недооцененной из всех жидкостей организма. Тем не менее, этот небольшой по объему секрет играет жизненно важную роль в сохранении интеграции тканей полости рта. У взрослого человека за сутки выделяется 1,5—2 л слюны все­ми слюнными железами, если учитывать, что вес их равен 65 г, станет очевидным представление об интенсивности обмена ве­ществ. Сравнение интенсивности обмена веществ слюнных желез с обменом в других органах показывает, что он лишь немного менее интенсивен, чем в почках, и более высок, чем в печени.

Слюна является комплексным секретом. Она первично состоит из секретов больших и малых слюнных желез. В ацинарных клетках их концевых отделов и происходит формирование секрета.

Различают три пары больших слюнных желез - околоушные, поднижнечелюстные и подъязычные, и малые слюнные железы - щечные, губные, язычные, твердого и мягкого неба.
Околоушная слюнная железа - самая большая слюнная железа из трех. Выводной проток, открывающийся в преддверии полости рта, имеет клапаны и терминальные сифоны, регулирующие выведение слюны.
Являясь органом пищеварительной системы, они выделяют в полость рта серозный секрет. Количество выделяемой слюны изменчиво и зависит от состояния организма, вида и запаха пищи. Клетки околоушной слюнной железы, осуществляя выделительную функцию, выводят из организма различные лекарственные вещества, токсины и др.
Поднижнечелюстная слюнная железа - выделяет серозно-слизистый секрет. Выводной проток открывается на подъязычном сосочке.
Подъязычная слюнная железа -
является смешанной и выделяет серозно-слизистый секрет. Выводной проток открывается на подъязычном сосочке. Слюнные железы кроме общеизвестных функций выполняют недостаточно изученную роль связи с эндокринными органами.

Процесс слюнообразования и нарушение слюноотделения.

       Механизмы, образования слюны изучены недостаточно. Вероятно, образование слюны определенного качественного и количественного состава происходит вследствие сочетания фильтрации в слюнные железы компонентов крови (например: альбуминов, иммуногло­булинов С, А, М, витаминов, лекарственных препаратов, гормонов, воды), избирательного выведения части профильтрованных соединений в кровь (например, некоторых белков плазмы крови), дополнительного введения в слюну компонентов, синтезируемых самой слюнной железой в кровь (например, муцинов). Поэтому изменить состав слюны могут как систем­ ные факторы, т.е. факторы изменяющие состав крови (например, поступление фтора с водой и пищей), так и факторы, влияющие на функционирование самих слюнных желез (например, воспаление желез). В целом состав секретируемой слюны качественно и количественно отличается от такового сы­воротки крови. Так, содержание общего кальция в слюне примерно вдвое ниже, а содержание фосфора вдвое выше, чем в сыворотке крови.

Слюноотделение регулируется лишь рефлекторно (условный ре­флекс на вид и запах пищи). В течение большей части дня, частота нейроимпульсов низкая и это обеспечивает так называемый базовый или "нестимулированный" уровень, тока слюны. При приеме пищи, в ответ на вкусовой и жевательный раздражители, происходит значительное увеличе­ние числа нейроимпульсов и секреция стимулируется. Скорость секреции сме­шанной слюны в состоянии покоя в среднем составляет 0,3-0,4 мл/мин, сти­муляция жеванием парафина увеличивает данный показатель до 1-2 мл/мин. Скорость нестимулированного слюноотделения у курильщиков со стажем до 15 лет до курения – 0,8 мл/мин, после курения – 1,4 мл/мин. Соединения, содержащиеся в табачном дыме (свыше 4 тыс. различных соединений, в том числе около 40 канцерогенов), оказывают раздражающее действие на ткань слюнных желез. Значительный стаж курения приводит к истощению вегетативной нервной системы, в ведении которой находятся слюнные железы.

Местные факторы:                                          

• гигиеническое состояние полости рта, инородные тела в полости рта (протезы)

• химический состав пищи за счет ее остатков в полости рта (нагрузка пищи углеводами увеличивает их содержание в ротовой жидкости)

• состояние слизистой полости рта, пародонта, твердых тканей зубов

    Суточный биоритм: ночью секреция слюны снижается, это создает оптимальные условия для жизнедеятельности микрофлоры и ведет к значи­тельному изменению состава органических компонентов.  Известно, что скорость секреции слюны опреде­ляет кариесрезистентность: чем выше скорость, тем более устойчивы зубы к кариесу.

Наиболее часто встречающимся нарушением слюноотделения является пониженная секреция (гипофункция). Наличие гипофункции может указывать на побочное действие лекарственного лечения, на системное заболевание (сахарный диабет, диарея, лихорадочные состояния), на гиповитаминоз А, В. Истинное снижение слюноотделения может не только сказаться на состоянии слизистой оболочки полости рта, но также отражать патологические изменения в слюнных железах.

Термин «ксеростомия» относится к ощущению пациентом сухости в полости рта. Ксеростомия редко является единственным симптомом. С ней связаны ротовые симптомы, которые включают повышенную жажду, повышенное потребление жидкости (особенно во время еды). Иногда пациенты жалуются на жжение, зуд в полости рта («синдром горящего рта»), на инфекцию полости рта, на трудности ношения съемных протезов, на ненормальные вкусовые ощущения.

Сухость, выстилающих ротовую полость тканей, является основной чертой гипофункции слюнной железы. Слизистая полости рта может выглядеть истонченной и бледной, потерявший свой блеск, при касании быть сухой. Язык или зеркало могут прилипать к мягким тканям. Также важно увеличение заболеваемости кариесом зубов, наличие ротовой инфекции, особенно кандидомикоза, образование фиссур и долек на спинке языка, иногда припухание слюнных желез.

    Повышение слюноотделения возможно при инородных телах в полости рта в промежутках между приемами пищи, повышенной возбудимости вегетативной нервной системы. Уменьшение функциональной активности вегетативной нервной системы ведет к застою и развитию атрофических и воспалительных процессов в органах слюноотделения.

 

ФУНКЦИИ СЛЮНЫ, которая на 99% состоит из воды и 1%растворимых неорганических и органических соединений.

Пищеварительная

Защитная

Минерализующая

 

1) ПИЩЕВАРИТЕЛЬНАЯ функция, связанная с пищей, обеспечивается стимулированным током слюны в ходе самого приема пищи. Стимулированная слюна секретируются под влиянием раздражения вкусовых рецепторов, жевания и других возбуждающих стимулов (например, как следствие рвотного рефлекса). Стимулированная слюна отличается от нестимулированной как по скорости секреции, так и по составу. Скорость секреции стимулированной слюны колеблется в широких пределах от 0,8 до 7 мл/мин. Активность секреции зависит от природы раздражителя. Так установлено, что слюноотделение может стимулироваться механически (например, за счет жевания резинки, даже без вкусового наполнителя). Однако подобная стимуляция не так активна, как стимуляция за счет вкусовых раздражителей. Среди вкусовых стимуляторов наибольшей эффективностью обладают кислоты (лимонная кислота). Среди ферментов стимулированной слюны преобладающим является амилаза. 10% белка и 70% амилазы вырабатывается околоушными желе­зами, остальное количество — преимущественно подчелюст­ными железами.

Амилаза - кальцийсодержащий металлоэнзим из группы гидролаз, ферментирует углеводы в полость рта, способствует удалению остатков пищи с поверхности зубов.

Щелочная фосфатаза вырабатывается мелкими слюнными железами, играет специфическую роль в формиро­вании зубов и реминерализации. Амилазу и щелочную фосфатазу относят к маркерным ферментам, дающим информа­цию о секреции больших и мелких желез слюны.

 

2) ЗАЩИТНАЯ функция, направленная на сохранение целостности тканей полости рта обеспечиваются, прежде всего нестимулированной слюной (в состоянии покоя). Скорость ее секреции составляет в среднем 0,3 мл/мин., однако скорость секреции может быть подвержена довольно значительным суточным и сезонным колебаниям. Пик нестимулированной секреции приходится на середину дня, а в ночное время секреция снижается до значений менее 0,1 мл/ мин. Защитные механизмы полости рта делятся на 2 группы: неспецифические факторы защиты, действующие вообще против микроорганизмов (чужеродных), но не против конкретных представителей микрофлоры, и специфические (специфическая иммунная система), влияющие только на определенные виды микроорганизмов.

Слюна  содержит муцин – это сложный белок, гликопротеид, содержит около 60% углеводов. Углеводный компонент представлен сиаловой кислотой и N-ацетилгалактозамином, фукозой и галактозой. Олигосахариды муцина образуют о-гликозидные связи с остатком серина и треонина в белковых мо­лекулах. Агрегаты муцина образуют структуры, прочно удерживающие воду внутри молекулярного матрикса, благодаря этому растворы муцина обладают значительной вязкостью. Удаление сиаловой кислоты значительно снижает вязкость растворов муцина.Ротовая жидкость с относительной плотностью 1,001 -1,017.
Муцины слюны покрывают и смазывают поверхность слизистой оболочки. Их крупные молекулы предотвращают прилипание бактерий и колонизацию, защищают ткани от физического повреждения и позволяют им устоять перед тепловыми перепадами. Некоторая мутность слюны обусловлена наличием клеточных элементов.

 Особое мес­то принадлежит лизоциму, синтезируемому слюнными железами и лейкоцитами. Лизоцим (ацетилмурамидаза) – щелочной белок, действующий как муколитический фермент.   Обладает бактерицидным действием за счет лизиса мураминовой кислоты - компонента бактериальных клеточных мембран, стимулирует фагоцитарную активность лейкоцитов, участвует в регенерации биологических тканей. Естественным ингибитором лизоцима является гепарин.

Лактоферрин оказывает бактериостатическое действие, обусловленное конкурентным связыванием ионов железа. Сиалопероксидаза в комплексе с перекисью водорода и тиоционатом подавляет активность бактериальных ферментов и оказывает бактериостатический эффект. Гистатин обладает антимикробной активностью в отношении Candida и Streptococcus. Цистатины подавляют активность бактериальных протеаз в слюне.

Иммунитет слизистых оболочек не является простым отражением общего иммунитета, а обусловлен функцией самостоятельной системы, оказывающей важное воздействие на формирование общего иммунитета и течение заболевания в полости рта.

    Специфическим иммунитетом является способность микроорганизма избирательно реагировать на попавшие в него антигены. Главным фактором специфической антимикробной защиты являются иммунные γ-глобулины.

В полости рта наиболее широко представлены IgA, IgG, IgM, но главным фактором специфической защиты в слюне являются секреторные иммуноглобулины (в основном класса А). Нарушают бактериальную адгезию, поддерживают специфический иммунитет против патогенных бактерий полости рта. Видоспецифические антитела и антигены, входящие в состав слюны, соответствуют группе крови человека. Концентрация групповых антигенов А и В в слюне выше, чем в сыворотке крови и других жидкостях организма. Однако у 20% людей количест­во групповых антигенов в слюне может быть низким или полностью отсутствовать. Иммуноглобулины класса А представлены в организме двумя разновидностями: сывороточными и секреторными. Сывороточный IgA по своему строению мало чем отличается от IgC и состоит из двух пар полипептидных цепей, соединенных дисульфидными связями. Секреторный IgA устойчив к действию различных протеолитических ферментов. Существует предположение о том, что чувствительные к действию ферментов пептидные связи в молекулах секреторного IgA закрыты вследствие присоединения секреторного компонента. Эта устойчивость к протеолизу имеет важное биологическое значение.

IgA синтезируются в плазматических клетках собственной пластинки слизистой оболочки и в слюнных железах, а секреторный компонент – в эпителиальных клетках. Для попадания в секреты IgA должен преодолевать плотный эпителиальный слой, выстилающий слизистые оболочки, молекулы иммуноглобулина А могут проходить этот путь как по межклеточным пространствам, так и через цитоплазму эпителиальных клеток. Другой путь появления иммуноглобулинов в секретах – поступление их из сыворотки крови в результате транссудации через воспаленную или поврежденную слизистую оболочку. Плоский эпителий, выстилающий слизистую оболочку рта, действует как пассивное молекулярное сито, особо благоприятствующее проникновению IgG.

 

3) МИНЕРАЛИЗУЮЩАЯ функция. Минералы слюны весьма разнообразны. В наибольшем количестве содержатся ионы Na+, K+, Ca2+, Cl-, фосфаты, бикарбонаты, а также множество микроэлементов, таких как магний, фтор, сульфаты и др. Хлориды — активаторы амилазы, фосфаты участвуют в об­разовании гидроксиапатитов, фтори­ды — стабилизаторы гидроксиапатита. Главная роль в образовании гидроксиапатитов принад­лежит Са2+, Mg 2+, Sr2+.

Слюна служит источником поступления в эмаль зубов кальция и фосфора, следовательно, слюна в норме является минерали­зующей жидкостью. Оптимальное соотношение Са/Р в эмали, необходимое для процессов минерализации, равно 2,0. Снижение этого коэффициента ниже 1,3 способствует развитию кариеса. Минерализующая функция состоит в воздействии на процессы минерализации и деминерализации эмали

 Систему эмаль-слюна теоретически можно рассматривать как систему:  кристалл ГА  раствор ГА (раствор ионов Са2+ и НРО42-), где:

V1 – скорость выхода ионов Са2+ и НРО42- из кристалла в раствор (скорость растворения кристалла)

V2 – скорость включения этих ионов в кристалл.

При постоянной температуре V1 = k1S

V2 = k2S [Са2+] [НРО42-],

где [Са2+] [НРО42-] – произведение молярных концентраций ионов в растворе,

k1 и k2 – константы, зависящие от природы растворяемого вещества и ионов,

S – площадь соприкосновения раствора и кристалла (в нашей системе также постоянна)

V1/ V2 = k1S / k2S [Са2+ ] [НРО42-]

Поскольку k1,k2 и S-константы, следует, что

V1/ V2 = const / const [Са2+ ] [НРО42-]

Последнее уравнение показывает, что соотношение скоростей процес­ сов растворения и кристаллизации ГА эмали при постоянных температуре и площади соприкосновения раствора и кристалла зависит только от произве­дения молярных концентраций ионов кальция и гидрофосфата.

Если скорости растворения и кристаллизации равны, в раствор пере­ходит столько ионов, сколько их осаждается в кристалл. Произведение мо­лярных концентраций в этом состоянии - состоянии равновесия - называет­ся произведением растворимости (ПР).

Если в растворе [Са2+ ] [НРО42- ] = ПР, раствор считается насыщен-­
ным. В этом случае V1= V2  

Если в растворе [Са2+ ] [НРО42- ] < ПР, раствор считается ненасы­щенным, при этом V1 > V2, то есть происходит растворение кристаллов.

Если в растворе [Са2+ ] [НРО42- ] > ПР, раствор считается пересы­щенным, происходит рост кристаллов.

Молярные концентрации ионов кальция и гидрофосфата в слюне та­-
ковы, что их произведение больше, чем расчетное ПР, необходимое для
поддержания равновесия в системе : кристалл ГА раствор ГА ( раствор ионов Са2+ и НРО42-).

 Слюна пересыщена этими ионами. Такая высокая концентрация ионов кальция и гидрофосфата способствует их диффузии в эмалевую жидкость. Последняя благодаря этому также представляет собой пересыщенньй раствор ГА. Это обеспечивает преимущество  минерализации эмали при ее созревании и реминерализации. В этом и состоит сущность минерализующей функции слюны.  Минерализующая функция слюны зависит от рН слюны. Причина заключается в снижении в слюне концентрации гидрокарбонатных ионов вследствии реакции:

HPO42- + H+  H2PO4-

Дигидрофосфатные ионы Н2РО4- в отличии от гидрофосфатных НРО42-  при взаимодействии с ионами кальция не дают ГА.

Это приводит к тому, что слюна превращается из пересыщенного рас­твора в насыщенный или даже ненасыщенный раствор по отношению ГА. При этом увеличивается скорость растворения ГА, т.е. скорость деминерализа­ции.    

 Снижение рН может происходить при усилении деятельности микро­флоры в связи с продукцией кислых продуктов обмена. Основной продуци­руемый кислый продукт – молочная кислота, образуется при распаде в клетках бактерий глюкозы. Увеличение скорости деминерализации эмали становится значимым при снижении рН ниже 6,0. Однако такое сильное закисление слюны в полости рта происходит редко в связи с работой бу­ферных систем. Чаще происходит локальное закисление среды в участке образования мягкого зубного налета.

Увеличение рН слюны относительно нормы (защелачивание) приво­дит к увеличению скорости минерализации эмали. Однако при этом усили­вается и скорость отложения зубного камня.

Ряд белков слюны вносят свой, вклад в реминерализацию подповерх­ностных поражений эмали. Статерины (пролиносодержащие белки) и ряд фосфопротеинов препятствуют кристаллизации минералов в слюне, поддерживают слюну в состоянии перенасыщенного раствора.

Их молекулы обладают способностью связывать кальций. При падении рН в зубном налете они освобождают ио­ны кальция и фосфата в жидкую фазу зубного налета, таким образом спо­собствуя усилению минерализации.

Таким образом, в норме в эмали протекают два противоположно на­правленных процесса: деминерализация вследствие выхода ионов кальция и фосфата и минерализация вследствие встраивания в решетку ГА этих ио­нов, а также роста кристаллов ГА. Определенное, соотношение скорости деминерализации и минерализации, обеспечивает поддержание нормальной структуры эмали, ее гомеостаз. Гомеостаз определяется главным образом составом, скоростью секреции и физико-химическими свойствами ротовой жидкости. Переходв ГА эмали ионов из ротовой жидкости сопровож­дается изменением скорости деминерализации. Важнейшим фактором, влияющим на гомеостаз эмали является концентрация протонов в ротовой жидкости. Снижение рН ротовой жидкости может привести к усилению растворения, деминерализации эмали

Буферные системы слюны представлены бикарбонатной, фосфатной и белковой системами. рН слюны колеблется от 6,4 до 7,8, в более широкихпределах, чем рН крови и зависит от ряда факторов — гигие­нического состояния полости рта, характера пищи. Наиболее сильным дестабилизирующим pH фактором слюны является кислотообразующая активность микрофлоры полости рта, которая особенно усиливается после приема углеводной пищи. "Кислая" реакция ротовой жидкости наблюдается очень редко, хотя локальное снижение pH - явление закономерное и обусловлено жизнедеятельностью микрофлоры зубного налета, кариозных полостей. При низкой скорости секреции рН слюны сдвигается в кислую сторону, что способствует развитию кариеса (рН<5). При стиму­ляции слюноотделения происходит сдвиг рН в щелочную сторону.

Микрофлора полости рта  крайне разнообразна и включает бактерии (спирохеты, риккетсии, кокки и др.), грибы (в том числе актиномицеты), простейшие, вирусы. При этом значительную часть микроорганизмов полости рта взрослых людей составляют анаэробные виды. Микрофлора подробно рассматривается в курсе микробиологии.


 Кислотно-щелочное равновесие в полости рта, нарушения и коррекция

Важным и наименее постоянным параметром гомеостаза полости рта является кислотно-щелочное равновесие. Наиболее информативным показателем кислотно-основного равновесия является водородный показатель (рН). Этот показатель варьирует в зависимости от участка полости: кислое значение рН в межзубных промежутках и нейтральное или слабощелочное - на кончике языка. Интегральным показателем кислотного гомеостаза в полости рта является рН слюны. В норме рН слюны находится в пределах 6,5-7,5.

Изменения кислотно-щелочного равновесия вполости рта могут быть двух видов: ацидоз или алкалоз. При любом направлении сдвигов гомео­стаза следует различать изменения физиологические и патологические. Фи­зиологические изменения кратковременны, не приводят к нарушению нор­мальных физиологических процессов и не оказывают влияния на структуру и функции тканей полости рта. Патологические изменения значительно вы­ходят за границы нормы и приводят к нарушениям структуры и функций тех или иных тканей полости рта: кариесу, десквамации эпителия слизис­той, отложению зубного камня, пародонтиту.

 

Естественные факторы, влияющие на кислотно-щелочное состояние полости рта

Множество эндо- и экзогенных факторов влияет на кислотно-щелочное равновесие в полости рта: общее состояние организма человека, выраженность условных и безусловных рефлексов, мышечная (жевательная) активность, характер дыхания, речи, пища, ротовая микрофлора, гигиени­ческие средства, протезы, пломбы и другое. Наиболее выражено в физиологических условиях влияют жизнедеятельность микрофлоры, состав пищи, состав искорость секреции слюны.

Микробный налет образуется, в основном, на поверхностях зубов, ис­кусственных протезов и на спинке языка. Зубной налет (зубная бляшка) - скопление микроорганизмов, обитающих в полости рта, на поверхности зубов с включением бесструктурного вещества органической природы: бел­ков, липидов, углеводов. Среди углеводов важное значение имеет декстран - гомоолигосахарид, состоящий из остатков глюкозы. Декстран обладает способностью адгезировать (сорбировать) бактерии в зубную бляшку. Зре­лый зубной налет в 1г содержит около 2,5 • 1011 бактерий. Основным ис­точником энергопродукции бактерий зубного налета являются процессы анаэробного распада углеводов: молочнокислое, маслянокислое, пропионовокислое брожение. Лактат и другие органические кислоты, продуци­руемое микробным налетом при утилизации углеводов пищи, и являются главными ''виновниками" ацидозных сдвигов не только в области зубного налета, но и в ротовой жидкости. В налете идет процесс утилизации мочевины, поступающей в ротовую по­лость главным образом со слюной. Уреазы бактерий расщепляют мочевину на аммиак и углекислый газ. Аммиак, связывая протоны, смещает кислот­но-щелочное равновесие в основную сторону. Однако этого недостаточно, чтобы противостоять мощному "метаболическому взрыву", вызванному углеводами.

Пища является дестабилизатором кислотно-основного равновесия. Влияние пищи следует рассматривать в нескольких аспектах.

Во-первых, пища содержит кислоты и основания. Так, фрукты, соки содержат значительное количество органических кислот, которые вызы­вают резкое снижение рН ротовой жидкости (до 4-3 единиц). Если такой пищевой продукт недолго задерживается в полости рта, это изменение кратковременно. Более длительный контакт может вызвать, например, эро­зию твердых тканей зубов: эмали и дентина. Некоторые пищевые продукты содержат ионы аммония, мочевину (сыр, орехи, ментол) и являются алкогенными. Обычно изменения реакции смешанной слюны в щелочную сто­рону незначительны и не превышают рН 8.

 Во-вторых, содержащиеся в пище углеводы метаболизируются мик­рофлорой зубного налета, с образованием большого количества органиче­ских кислот, преимущественно лактата. Наиболее ацидогенными являются моно- и дисахариды. В порядке убывания ацидогенности их можно распо­ложить следующим образом: сахароза, инвертный сахар, глюкоза, фрукто­за, мальтоза, галактоза, лактоза. Особая ацидогенность сахарозы обуслов­лена приспособляемостью микроорганизмов к избытку сахарозы и объяс­няется ее очень быстрой ферментацией в зубном налете, выраженным стимулирующим действием на рост зубного налета, высокой способностью  стимулировать выработку в зубном налете полисахаридов, в частности, полисахаридов с адгезивными свойствами.

В-третьих, прием пищи, ее пережевывание стимулируют слюноотделе­ние и, тем самым, способствуют нивелированию возникающих сдвигов рН.

Слюна является главным фактором нивелирования сдвигов рН в ротовой полости в физиологических условиях. Ее влияние на этот показатель обусловлено:

• механическим очищением от остатков пищи;               1

• противомикробным действием лизоцима, цианидных анионов, фа­гоцитов, иммуноглобулинов и других компонентов;      

• работой буферных систем: бикарбонатной (обеспечивает около 80% буферной емкости слюны), белковой и фосфатной.

Реализация стабилизирующих рН свойств слюны существенно за­висит от скорости ее секреции, реологических свойств (вязкости). В целом, чем выше скорость слюноотделения и меньше вязкость, тем сильнее спо­ собность слюны противостоять изменениям рН в полости рта. Мышечные сокращения, связанные с жеванием, глотанием и речью способствуют опо­рожнению слюнных желез и перемещениям слюны в полости рта, и поэтому могут рассматриваться как фактор стабилизации кислотно-щелочного рав­новесия.   


Дата добавления: 2021-03-18; просмотров: 109; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!