Приложения: ледниковые периоды на земле.



Исторически, проблема, связанная с периодичностью наступления ледниковых периодов, была первой задачей, для разрешения которой было привлечено явление стохастического резонанса. Поскольку она представляет собой очень интересный пример того, как упрощенная механическая модель применяется в очень далекой от механики области, мы остановимся на ней подробнее.  

Суть проблемы заключается в следующем. Из геологических данных известно, что ледниковые периоды на Земле наступают приблизительно каждые 40 тыс. лет. Это происходит из-за того, что угол наклона оси собственного вращения Земли к плоскости эклиптики (равный в настоящее время 23,5°) колеблется от 0° до 90° с периодом 41000 лет (рис.7а). В этих двух крайних положениях Солнце облучает полярные области по-разному, что приводит к образованию или к исчезновению значительных континентальных оледенений в полярных областях.  

Однако это еще не вся правда. Как показал статистический анализ, в последовательности оледенений явно видна и дополнительная периодичность с характерным периодом ~ 100 тыс. лет. Наблюдение очень интригующее, поскольку единственный известный процесс в динамике Земли с таким временным масштабом - это колебание эксцентриситета земной орбиты, вызванное гравитационным возмущением других планет (рис.7б). Эксцентриситет - это числовой параметр, характеризующий вытянутость эллипса; он равен отношению расстоянию между двумя фокусами эллипса, деленному на его большую ось. С точки зрения глобального климата, эксцентриситет показывает, насколько зима (усредненная по всей планете) холоднее лета.  

Так вот, проблема заключается в том, что эти колебания эксцентриситета очень малы (в настоящее время эксцентриситет равен 0,0167). Возникающие при этом колебания потока солнечной энергии, попадающей на Землю за год, и того меньше, ~ 0,1%. Неужели такие слабые колебания могут приводить к ощутимым изменениям климата?  

Именно для объяснения этого и была впервые привлечена модель стохастического резонанса. Роль бистабильной системы здесь играет Земля. Два ее устойчивых положения равновесия - это Земля, покрытая континентальным льдом, и Земля, свободная от него. Действительно, Земля, покрытая льдом, будет отражать значительный процент солнечного света, что приведет к уменьшению глобальной температуры, а значит, будет предохранять ледники от таяния. Если все-таки что-то заставит их растаять, то Земля станет поглощать гораздо больший процент солнечного света, ее температура повысится, и это будет препятствовать случайному образованию новых ледников.  

Внешний подпороговый сигнал - это колебания мощности попадающего на Землю излучения, вызванные изменением эксцентриситета. То, что это подпороговый сигнал, значит, что сами по себе эти колебания не способны изменить глобальный климат на Земле. Наконец, шум в данном случае - это любые сильные кратковременные воздействия, например, сезонные колебания температуры.  

Построив эту модель и просчитав ее, ученые, в самом деле, обнаружили, что из-за стохастического резонанса такой сигнал может привести к наблюдаемым эффектам.  

Приложения: от оптических систем до нейронных сетей.

Стохастический резонанс наблюдался и в лаборатории, причем в самых разнообразных системах. Кроме того, оказывается, что принцип стохастического резонанса используется и в функционировании живых организмов. Здесь упомянем только два примера - стохастический резонанс применительно к оптическим системам и к возникновению нервных импульсов.  

Примером оптической системы, в которой наблюдался стохастический резонанс, служит так называемый кольцевой лазер (рис.8), в котором лазерный свет накачивается в резонаторе с тремя или более зеркалами. В этой системе существует два стабильных режима накачки лазерного света, когда свет движется по или против часовой стрелки. Экспериментаторы модулировали параметры накачки в этих двух режимах и наблюдали стохастический резонанс в выходящем лазерном свете. Это был один из первых экспериментов (1988 год), когда стохастический резонанс наблюдался в лаборатории.  

В начале 90-х годов было осознано, что стохастический резонанс может играть ключевую роль в нейрофизиологических процессах, а именно, в функционировании нейронных сетей, в передаче импульсов от одной группы нейронов другой.  

Например, в экспериментах 1991-1993 годов было выяснено, что возникновение нервного импульса в механорецепторных клетках речного рака как раз основано на явлении стохастического резонанса. Благодаря этому, рак может усиками улавливать слабое синхронное колебание воды вокруг себя, несмотря на присутствие разного рода "шумов", и таким образом заранее узнавать о приближении опасности.  

После этих классических экспериментов хлынул целый поток работ, посвященных роли стохастического резонанса в возникновении и распространении нервных импульсов. Сейчас это уже широко принятая парадигма в биологических и нейрофизиологических науках.  


Дата добавления: 2020-12-12; просмотров: 116; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!