Контрольная работа №2 по теме: « Строение тел солнечной системы. Природа тел Солнечной системы. »



Вариант

№п/п балл Вопрос
1. 0,5 балла Какие из малых тел Солнечной Системы иногда имеют « хвост падающей звезды»? а) астероид; б) метеор; в) метеорит; г) кометы; д) планета-карлик.
2. 0,5 балла 8. Наиболее высокая температура на поверхности: 1. Меркурий         2. Марс                3. Земля                       4. Венера
3. 0,5 балла 7. Самой дальней от Солнца из планет земной группы является: 1. Меркурий         2. Марс         3. Земля            4. Венера
4. 0,5 балла Закончите предложение: Воображаемая окружность на поверхности Земли, проведенная на равном расстоянии от Северного и Южного полюсов, называется _______________________.
5. 1 балл Как меняется значение скорости движения планеты при ее перемещении от афелия к перигелию? А) В афелии скорость планеты максимальная, затем она возрастает и в перигелии становится минимальной. Б) В афелии скорость планеты минимальная, затем она возрастает и в перигелии становится максимальной. В) В афелии скорость планеты минимальная, затем она возрастает и в перигелии становится равной нулю.
6. 1 балл Какие из химических элементов наиболее распространены на Солнце? а) оксиген и железо; б) водород и гелий; в) водород и оксиген; г) азот и оксиген; д) феррум и азот.
7. 2 балла Как по виду на небе Луны распознать старый (уходящий) месяц? Сделать схематический рисунок. (на обороте)
8. 1 балл Можно ли на Луне наблюдать метеоры? Ответ поясните.  
9. 2 балла Чему равна большая полуось орбиты Урана, если звездный период его обращения вокруг Солнца составляет 84 года? (на обороте)_________________
10. 1 балл Существует ли различие между метеором и метеоритом?___________ _______________________________________________________________________ _______________________________________________________________________

 

Оценка_________________________

 

 

Группа_________ ДАТА__________________ Фамилия Имя________________________

Контрольная работа №2 по теме: « Строение тел солнечной системы. Природа тел Солнечной системы. »

Вариант

№п/п балл Вопрос
1. 0,5 балла 5. Слово «кратер» в переводе с греческого обозначает: А. «большая чаша» Б.«большой овраг» В «большой желоб» Г «большое блюдце»  
2. 0,5 балла 9. Из планет земной группы спутники имеют: 1. Меркурий и Земля                         2. Марс и Земля 3. Венера и Марс                           4. Венера и Меркурий  
3. 1 балл При каких условиях движение небесных тел будет происходить в точности по законам Кеплера? А) Если в Солнечной системе одна планета. Б) Если в Солнечной системе не одна планета, а много, и каждая из них испытывает со стороны других возмущения. В) В случае, если существуют лишь два взаимно притягивающихся тела.
4. 1 балл Почему на Марсе происходят более резкие, чем на Земле, колебания температуры в течение суток?___________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________
5. 0,5 балла Солнечная система, по мнению ученых, образовалась: 1.  3,0-3,5 млрд. лет назад              2. 4,5-5.0 млрд. лет назад    3. 5.0-6.5 млрд. лет назад               4. 2.5-3.0 млрд. лет назад  
6. 0,5 балла Закончите предложение: Точки пересечения воображаемой земной оси с поверхностью Земли называются _______________________.
7. 2 балла Нарисуйте схему взаимного расположения Солнца, Луны и Земли при солнечном затмении. (на обороте)  
8. 1 балл Охарактеризуйте различие в атмосферах Земли и Венеры.___________________  
9. 1 балл Можно ли на Луне наблюдать метеоры? Ответ поясните._______________________   ____________________________________________________________________________  
10. 2 балла Большая полуось орбиты Сатурна 9,54а.е. Каков звездный период его обращения вокруг Солнца? (на обороте)_______________________________________________

 

Оценка_________________________

 

 

МАТЕРИАЛ ДЛЯ ИЗУЧЕНИЯ

СОЛНЦЕ — БЛИЖАЙШАЯ ЗВЕЗДА.

Излучение и температура Солнца.

Состав и строение Солнца.

Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Стефана—Больцмана.

Энергия и температура Солнца.

Солнце — центральное тело Солнечной системы — является типичным представителем звёзд, наиболее распространённых во Вселенной тел. Масса Солнца составляет 2•1030 кг. Как и многие другие звёзды, Солнце представляет собой огромный шар, который состоит из водородно-гелиевой плазмы и находится в равновесии в поле собственного тяготения. Изучение физических процессов, происходящих на Солнце, имеет важное  значение для астрофизики, поскольку эти процессы свойственны, очевидно, и другим звёздам, но только на Солнце мы можем наблюдать их достаточно детально. Солнце излучает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет физические условия на Земле и других планетах, а также в межпланетном пространстве. Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре. Большинство источников энергии, которые использует человечество, связаны с Солнцем. Тепло и свет Солнца обеспечили развитие жизни на Земле, формирование месторождений угля, нефти и газа.

Количество приходящей от Солнца на Землю энергии принято характеризовать солнечной постоянной.

Солнечная постоянная — поток солнечного излучения, который приходит на поверхность площадью 1 м2, расположенную за пределами атмосферы перпендикулярно солнечным лучам на среднем расстоянии Земли от Солнца (1 а. е.).

Солнечная постоянная равна 1,37 кВт/м2. Умножив эту величину на площадь поверхности шара, радиус которого 1 а. е., определим полную мощность излучения Солнца, его светимость, которая составляет 4•1026 Вт. Знание законов излучения позволяет определить температуру фотосферы Солнца.

Энергия, излучаемая нагретым телом с единицы площади, определяется законом Стефана—Больцмана:

E = σ•T    4.

Светимость Солнца известна, остаётся узнать, какова площадь поверхности Солнца. С Земли мы видим Солнце как небольшой диск, край которого достаточно чётко определяет фотосфера (в переводе с греческого «сфера света»). Так называется тот слой, от которого приходит практически всё видимое излучение Солнца. Он имеет толщину всего 300 км и выглядит как поверхность Солнца. Угловой диаметр солнечного диска примерно 30ʹ. Зная расстояние до Солнца (150 млн км), нетрудно вычислить его линейные размеры и площадь поверхности. Радиус Солнца равен приблизительно 700 тыс. км. Теперь можно узнать, какова температура фотосферы. Светимость Солнца

L = 4πR2E или L = 4πR2σT    4,

где σ = 5,67•10–8 Вт/(м2•К4). Отсюда . Подставив в эту формулу численные значения входящих в неё величин, получим T = 6000 К. Очевидно, что такая температура может поддерживаться лишь за счёт постоянного притока энергии из недр Солнца.

Состав и строение Солнца

Для изучения Солнца используются телескопы особой конструкции — башенные солнечные телескопы (рис. 5.1). Система зеркал непрерывно поворачивается вслед за Солнцем и направляет его лучи вниз на главное зеркало, а затем они попадают в спектрографы или другие приборы, с помощью которых проводятся исследования Солнца. Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно получить изображение Солнца диаметром до 80 см и детально изучать происходящие на нём явления. Они лучше видны на спектрогелиограммах (см. цветную вклейку XII) — снимках Солнца, которые сделаны в лучах, соответствующих спектральным линиям водорода, кальция и некоторых других элементов.

 

Рис. 5.1. Башенный солнечный телескоп

Важнейшую информацию о физических процессах на Солнце даёт спектральный анализ. Именно в спектре Солнца Йозеф Фраунгофер ещё в 1814 г. обнаружил и описал линии поглощения, по которым, как стало ясно почти полвека спустя, можно узнать состав его атмосферы (см. рис. 4 на цветной вклейке XII). В настоящее время в солнечном спектре зарегистрировано более 30 тыс. линий, принадлежащих 72 химическим элементам. Химический элемент гелий (от греч. «гелиос» — солнечный) был сначала открыт спектральными методами на Солнце, а лишь затем уже обнаружен на Земле. Все последующие попытки найти линии других неизвестных элементов не увенчались успехом, но были тем не менее не бесполезны. Они во многом способствовали развитию теории спектрального анализа, которая важна как для астрофизики, так и для физики в целом. Современные данные о химическом составе Солнца таковы: водород составляет около 70% солнечной массы, гелий — более 28%, остальные элементы — менее 2%. Количество атомов этих элементов в 1000 раз меньше, чем атомов водорода и гелия. Эти соотношения представлены на рисунке. Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму. Средняя плотность солнечного вещества примерно 1400 кг/м3. Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

 Используя закон всемирного тяготения и газовые законы, можно рассчитать условия внутри Солнца, построить модель «спокойного» Солнца. Оно находится в равновесии, поскольку в каждом его слое действие сил тяготения, которые стремятся сжать Солнце, уравновешивается действием сил внутреннего давления газа. Действием гравитационных сил в недрах Солнца создаётся огромное давление. Сделаем приближённый расчёт его величины для слоя, лежащего на расстоянии R/2 от центра Солнца. При этом будем считать, что плотность вещества внутри Солнца всюду равна средней (рис. 5.3).

Сила тяжести на этой глубине определяется массой вещества, заключённой в радиальном столбике, высота которого R/2, площадь S, а также ускорением свободного падения на поверхности сферы радиусом R/2. Масса вещества в этом столбике равна: ,

а ускорение на расстоянии R/2 (согласно закону всемирного тяготения) выражается так: , так как объём этой сферы составляет 1/8 от объёма всего Солнца. Подставив необходимые данные в формулу p = mg/S, получим, что давление равно примерно 6,6•1013 Па, т. е. в 1 млрд раз превосходит нормальное атмосферное давление. Для вычисления температуры воспользуемся уравнением Клапейрона—Менделеева: . Поскольку , , где R — универсальная газовая постоянная, а M — молярная масса водородной плазмы. Если считать, что в состав вещества входят в равном количестве протоны и электроны, то она примерно равна 0,5•10–3 кг/моль. Тогда T = 2,8•106 К. Более точные расчёты, проведённые с учётом изменения плотности с глубиной, дают результаты, лишь незначительно отличающиеся от полученных выше: p = 6,1•1013 Па, T =3,4•106 К. Согласно современным данным, температура в центре Солнца достигает 15 млн К, давление 2•1018 Па, а плотность вещества значительно превышает плотность твёрдых тел в земных условиях: 1,5•105 кг/м3, т. е. в 13 раз больше плотности свинца. Тем не-менее применение газовых законов к веществу, находящемуся в этом состоянии, оправдано тем, что оно ионизовано. Размеры атомных ядер, потерявших свои электроны, примерно в 10 тыс. раз меньше размеров самого атома, а размеры самих частиц довольно малы по сравнению с расстояниями между ними. Это условие, которому должен удовлетворять идеальный газ, для смеси ядер и электронов, составляющих вещество внутри Солнца, выполняется, несмотря на его высокую плотность. При высокой температуре в центральной части Солнца протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. В результате такого взаимодействия происходит термоядерная реакция: четыре протона образуют альфа-частицу (ядро гелия) (рис. 5.4).

Рис. 5.4. Схема реакций протон- протонного цикла

Термоядерная реакция включает такие этапы:

 

Как известно из курса физики, все три типа нейтрино (электронное, мюонное и тонное) столь слабо взаимодействуют с веществом, что свободно проходят сквозь Солнце и Землю. Со времени открытия нейтрино в 1953 г. его масса, которая экспериментально не была обнаружена, считалась равной нулю. Первый детектор этих частиц, идущих от Солнца, зарегистрировал поток электронных нейтрино, но он оказался в несколько раз меньше ожидаемого. Возник «парадокс» солнечных нейтрино: или внутреннее строение Солнца не соответствует расчётам, или свойства нейтрино изучены недостаточно полно. Только спустя почти полвека, в 2002 г., удалось решить этот парадокс. Детектором, в котором использовалась тяжёлая вода 2H2O, были зарегистрированы сразу три типа солнечных нейтрино. Оказалось, что значительная часть электронных нейтрино (а именно они рождаются в недрах Солнца в результате термоядерных реакций) по пути к Земле меняют свой тип — «осциллируют». Но это может происходить только в том случае, если нейтрино обладают массой покоя. В результате, с одной стороны, физики получили сведения о том, что нейтрино имеет массу покоя, которые не удавалось получить каким-то иным путём. Согласно имеющимся оценкам, она должна составлять не более нескольких электронвольт. Напомним, что масса электрона примерно 0,5 МэВ, т. е. в несколько десятков тысяч раз больше. С другой стороны, астрофизики убедились в справедливости представлений о термоядерных реакциях, происходящих внутри Солнца. Кинетическая энергия, которую приобретают образующиеся в ходе реакции частицы, поддерживает высокую температуру плазмы, и тем самым создаются условия для продолжения термоядерного синтеза. Энергия гамма-квантов обеспечивает излучение Солнца. Из недр Солнца наружу эта энергия передаётся двумя способами: излучением, т. е. самими квантами, и конвекцией, т. е. веществом. Выделение энергии и её перенос определяют внутреннее строение Солнца:

ядро — центральная зона, где при высоком давлении и температуре происходят термоядерные реакции;

лучистая зона, где энергия передаётся наружу от слоя к слою в результате последовательного поглощения и излучения квантов;

наружная конвективная зона, где энергия от слоя к слою переносится самим веществом в результате перемешивания (конвекции).

Каждая из этих зон занимает примерно 1/3 солнечного радиуса (рис. 5.5).

Рис. 5.5. Внутреннее строение Солнца

Сразу за конвективной зоной начинается атмосфера, которая простирается далеко за пределы видимого диска Солнца. Её нижний слой — фотосфера — воспринимается как поверхность Солнца. Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо из космического пространства, либо при помощи специальных приборов с поверхности Земли.

Атмосфера Солнца

 Фотосфера — самый нижний слой атмосферы Солнца, в котором температура довольно быстро убывает от 8000 до 4000 К. Следствием конвективного движения вещества в верхних слоях Солнца является своеобразный вид фотосферы — грануляция(рис. 5.6). Фотосфера как бы состоит из отдельных зёрен — гранул, размеры которых составляют в среднем несколько сотен (до 1000) километров. Гранула — это поток горячего газа, поднимающийся вверх. В тёмных промежутках между гранулами находится более холодный газ, опускающийся вниз. Каждая гранула существует всего 5—10 мин, затем на её месте появляется новая, которая отличается от прежней по форме и размерам. Общая наблюдаемая картина при этом не меняется. Вещество фотосферы нагревается за счёт энергии, поступающей из недр Солнца, а излучение, которое уходит в межпланетное пространство, уносит энергию, поэтому наружные слои фотосферы охлаждаются. В самых верхних слоях фотосферы плотность вещества составляет 10–3—10–4 кг/м3. Здесь в условиях минимальной для Солнца температуры оказывается возможным существование нейтральных атомов водорода и даже простейших молекул и радикалов H2, OH, CH.

 

 Над фотосферой располагается хромосфера («сфера цвета»). Красновато-фиолетовое кольцо хромосферы можно видеть в те моменты, когда диск Солнца закрыт Луной во время полного солнечного затмения. В хромосфере вещество имеет температуру в 2—3 раза выше, чем в фотосфере. Здесь, каки внутри Солнца, оно представляет собой плазму, только меньшей плотности. Толщина хромосферы 10—15 тыс. км, а далее на миллионы километров (несколько радиусов Солнца) простирается солнечная корона (рис. 5.7).

Температура короны резко возрастает по сравнению с температурой хромосферы и достигает 2 млн К. Причиной нагрева солнечной короны являются магнитозвуковые волны, поднимающиеся в корону из более глубинных слоёв Солнца. Для короны, которую можно наблюдать во время полных солнечных затмений как жемчужно-серебристое сияние, характерна лучистая структура с множеством сложных деталей — дуг, шлемов и т. д. (см. рис. 5.7). Солнечная корона (рис. 5.8) явилась для астрофизики уникальной природной лабораторией, в которой удаётся наблюдать поведение вещества в условиях, недостижимых на Земле. Высокая температура короны обеспечивает полную ионизацию лёгких элементов, а у более тяжёлых сохраняются электроны, находящиеся на самых глубоких электронных оболочках. Высокоионизованную плазму короны часто называют электронным газом, имея в виду, что число электронов, потерянных атомами, существенно превосходит число образовавшихся при этом положительных ионов. Плотность вещества по мере удаления от Солнца постепенно уменьшается, но потоки плазмы из короны (солнечный ветер) растекаются по всей планетной системе. Скорость этих потоков в окрестностях Земли обычно составляет 400—500 км/с, но у некоторых может достигать 1000 км/с. Основными составляющими солнечного ветра являются протоны и электроны, значительно меньше альфа-частиц и других ионов. Наша планета фактически находится в солнечной короне, поэтому многие геофизические явления испытывают на себе влияние процессов, происходящих на Солнце, в особенности в периоды максимума солнечной активности. Солнечный ветер порождает не только на Земле, но и на других планетах Солнечной системы, обладающих магнитным полем, такие явления, как магнитосфера, полярные сияния и радиационные пояса.

Солнечная активность.

Как правило, в атмосфере Солнца наблюдаются многообразные проявления солнечной активности, характер протекания которых определяется поведением солнечной плазмы в магнитном поле: пятна, вспышки, протуберанцы, корональные выбросы и т. п. Наиболее известными из них являются солнечные пятна, открытые ещё в начале XVII в. во время первых наблюдений при помощи телескопа. По изменению положения пятен на диске Солнца было обнаружено, что оно вращается. Наблюдения показали, что угловая скорость вращения Солнца убывает от экватора к полюсам, а время полного оборота вокруг оси возрастает с 25 суток (на экваторе) до 30 (вблизи полюсов).

Общее магнитное поле Солнца по форме линий магнитной индукции отчасти напоминает земное. Пятна появляются в тех сравнительно небольших областях фотосферы Солнца, где магнитное поле усиливается в несколько тысяч раз по сравнению с общим фоном, и его индукция может достигать 0,4—0,5 Тл. Усиление магнитного поля, которое охватывает также лежащие выше области хромосферы и короны, является характерным признаком активной области (центра активности).

 Сначала пятна наблюдаются как маленькие тёмные участки диаметром 2000—3000 км. Большинство из них в течение суток пропадают, однако некоторые увеличиваются в десятки раз. Такие пятна могут образовывать большие группы и существовать, меняя форму и размеры, на протяжении нескольких месяцев, т. е. нескольких оборотов Солнца. У крупных пятен вокруг наиболее тёмной центральной части (её называют тень) наблюдается менее тёмная — полутень (рис. 5.9). В центре пятна температура вещества снижается примерно до 4000 К, поэтому в спектре пятен наблюдаются полосы поглощения некоторых двухатомных молекул, например CO, TiO, CH, CN. Понижение температуры в районе пятна связано с действием магнитного поля, которое нарушает нормальную конвекцию и препятствует притоку энергии снизу. Вместе с тем вблизи пятен, где магнитное поле слабее, конвективные движения усиливаются, и появляются хорошо заметные яркие образования — факелы.

 Наиболее крупными по своим масштабам проявлениями солнечной активности являются наблюдаемые в солнечной короне протуберанцы — огромные по объёму облака газа, масса которых может достигать миллиардов тонн (см. рис. 2 на цветной вклейке XII). Некоторые из них («спокойные») напоминают по форме гигантские занавеси толщиной 3—5 тыс. км, высотой около 10 тыс. км и длиной до 100 тыс. км, подпираемые колоннами, по которым газ течёт из короны вниз. Они медленно меняют свою форму и могут существовать в течение нескольких месяцев. Во многих случаях в протуберанцах наблюдается упорядоченное движение отдельных сгустков и струй по криволинейным траекториям, напоминающим по форме линии индукции магнитных полей (рис. 5.10). Порой отдельные части протуберанцев быстро устремляются вверх со скоростями порядка нескольких сотен километров в секунду и поднимаются на огромную высоту (до 1 млн км), что превышает радиус Солнца. Оказалось, что происходит это во время вспышек.

Самыми мощными проявлениями солнечной активности являются вспышки, в процессе которых за несколько минут иногда выделяется энергия до 1025 Дж (такова энергия примерно миллиарда атомных бомб). Вспышки наблюдаются как внезапные усиления яркости отдельных участков Солнца в районе пятен (см. рис. 3 на цветной вклейке XII). Продолжительность вспышек обычно около часа, а слабые длятся всего несколько минут. По своей сути вспышка — это взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под действием магнитного поля и приводит к образованию плазменного жгута или ленты, достигающих в длину десятков и даже сотен тысяч километров. Солнечная плазма в этой области может нагреваться до температуры порядка 10 млн К. Возрастает кинетическая энергия выбросов веществ, движущихся в короне и уходящих в межпланетное пространство со скоростями до 1000 км/с. Получают дополнительную энергию и значительно ускоряются потоки электронов, протонов и других заряженных частиц. Усиливается оптическое, рентгеновское, гамма- и радиоизлучение. Детальная теория сложного комплекса явлений, наблюдаемых во время вспышек, пока ещё не разработана, но, по современным представлениям, они связаны с возникновением и происходящим затем быстрым выделением избытка энергии в магнитных полях активных областей. Потоки плазмы, обусловленные солнечными вспышками и корональными выбросами, через сутки-двое достигают окрестностей Земли. Вещество, выбрасываемое из солнечной короны, представляет собой плазму с магнитным полем (так называемые магнитные облака). Взаимодействие такого облака с магнитосферой Земли вызывает аномальное возмущение — магнитную бурю. Магнитные бури вызывают возмущение ионосферы, что приводит к нарушениям в прохождении радиосигналов, в частности, от навигационных спутников. Изменение геомагнитного поля приводит к появлению индуцированных токов в линиях электропередачи и трубопроводах.

Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определённой, хотя и не очень строгой периодичностью — в среднем этот период составляет примерно 11,2 года (рис. 5.11). Отмечается определённая связь процессов жизнедеятельности растений и животных, состояния здоровья людей и погодно-климатических аномалий с уровнем солнечной активности, однако механизм воздействия этих процессов на земные явления ещё не вполне ясен.

Рис. 5.11. Периодичность солнечной активности

В настоящее время для изучения Солнца используются все средства космической техники. Метеоспутники на геостационарной орбите уже более 30 лет ведут общий мониторинг солнечной активности, измеряя потоки рентгеновского излучения и солнечных космических лучей. Для мониторинга корональных выбросов массы используется пара КА СТЕРЕО, которые находятся в разных точках орбиты Земли и помогают взглянуть на магнитное облако, летящее к Земле, «со стороны». КА СОХО позволяет отслеживать появление пятен, вспышек и корональных выбросов массы и по их местоположению и динамике давать трёхдневный прогноз, представляют ли они опасность для Земли.

Вопросы для самоконтроля.

 (Отвечать письменно, кратко, вопрос не переписывать,  но давать полные ответы).

 

1. Из каких химических элементов состоит Солнце и их соотношение?

2. Каков источник энергии излучения Солнца?

3. Какой слой Солнца является основным источником видимого излучения?

4. Каково внутреннее строение Солнца? Назовите основные слои его атмосферы.

5. В каких пределах изменяется температура на Солнце от его центра до фотосферы?

6. Какими способами осуществляется перенос энергии из недр Солнца наружу?

7. Чем объясняется наблюдаемая на Солнце грануляция?

8. Какие проявления солнечной активности наблюдаются в различных слоях атмосферы Солнца?

9. Чем объясняется понижение температуры в области солнечных пятен?

10. Какие явления на Земле связаны с солнечной активностью?


Дата добавления: 2021-02-10; просмотров: 454; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!