Шкала глубины резкости. Гиперфокальное расстояние



Достаточно часто в практике фотографа и фотолюбителя встречается необходимость изобразить резким не только объект, по которому резкость наводится, а еще и его окружение. Чаще всего в фотографии резкость наводится именно по самому значимому для сюжета фотографии плану. Понятно, что в этом случае глубину резкости нужно регулировать при помощи диафрагмы.

Выбирать степень необходимого диафрагмирования лучше всего исходя из опыта, сюжета съемки, особенностей объектива и предполагаемого увеличения фотографии, дополнительно ориентируясь по изображению в видоискателе (если камера зеркальная и имеет репетир диафрагмы) и по шкале глубины резко изображаемого пространства. Эта шкала, имеющаяся на части объективов, состоит из основной риски для метражной шкалы, указывающей расстояние точной наводки на резкость, и симметрично расположенных с двух сторон от нее пар штрихов, соответствующих передней и задней границам резко изображаемого пространства в зависимости от выбранной диафрагмы.

При помощи шкалы глубины резкости удобно выбирать степень диафрагмирования и в том случае, когда сюжетно-важным является не один объект в кадре, а группа объектов, находящихся на разном расстоянии от объектива. В таком случае лучше резкость наводить не на какой-то один из них, а оценить расстояние до самого ближнего и самого дальнего из них, рассчитать при помощи шкалы глубины резкости (или по опыту) соответствующее значение диафрагмы, и потом уже навести объектив так, чтобы промежуток по шкале расстояний между самым ближним и самым дальним объектами съемки делился центральной риской шкалы глубины резкости примерно пополам. По такому же алгоритму осуществляет наводку на резкость и выбор необходимой степени диафрагмирования объектива программа приоритета глубины резкости «DEP» старших аппаратов Canon EOS (программа «A-DEP» в младших аппаратах Canon EOS работает несколько по-другому).

Интересный случай – это глубина резкости при фокусировке на бесконечность. В этом случае реальный смысл имеет только передняя граница зоны резкости – ведь все, что дальше бесконечности все равно есть бесконечность… Поэтому тут можно легко и без ущерба для резкости удаленных объектов значительно увеличить глубину резкости, если сфокусировать объектив не на бесконечность, а на так называемое гиперфокальное расстояние. Определить его значение легко – при фокусировке на бесконечность передняя граница зоны резко изображаемого пространства как раз и соответствует гиперфокальному расстоянию.

Описание приемов пользования шкалой глубины резко изображаемого пространства будет неполным, если мы не остановимся на важном принципе. Пользуясь ею, а также таблицами глубины резкости и гиперфокальным расстоянием, не стоит забывать о том, что глубина резко изображаемого пространства может меняться в достаточно широких пределах в зависимости от сюжета, качества оптики и материалов, формата отпечатка и других параметров. Поэтому и подходить к использованию этих цифр надо творчески, не воспринимая их в качестве точных рассчетов и строгих критериев.

Аберрации объектива

Простая линза, на примере которой мы начали описание характеристик оптических систем, тоже может применяться в качестве объектива. Однако изображение, которое она создает на пленке, имеет целый ряд недостатков – резкость падает к краям кадра, да и в центре она не будет хорошей; легко заметны нарушения геометрического подобия изображения оригиналу и цветные окантовки объектов. Эти недостатки оптических систем, носящие общее название «аберраций», присущи не только простой линзе. Даже в самых современных и сложных по конструкции объективах часть аберраций не исправлены полностью, что приводит к ухудшению качества изображения.

Всего известно семь видов аберраций – сферическая аберрация, кома, астигматизм, кривизна поля, дисторсия, хроматическая аберрация и хроматическая разность изображений. Перечисленные аберрации по-разному влияют на изображение. К примеру, хроматическая аберрация и хроматическая разность изображений отвечают за появление у мелких деталей и контуров изображения цветных окантовок и ореолов. Сферическая аберрация приводит к ухудшению резкости по всему полю изображения, а кома – к дополнительному падению резкости к краям кадра. Фотографии также теряют четкость и становятся размытыми из-за влияния астигматизма и кривизны поля (вследствие того, что изображение строится не в плоскости пленки, а в некотором объеме). Из-за дисторсии прямые линии объекта съемки изображаются на снимке изогнутыми. Анализ и коррекция аберраций в многолинзовых объективах – сложная и нетривиальная задача, которая не решена полностью даже сейчас, когда у оптиков появились возможности компьютерного рассчета объективов, создания марок стекла с заданными характеристиками и линз с асферическими поверхностями. Ни один из реальных объективов не свободен от аберраций в полной мере. Поэтому создание объектива с высокими характеристиками – это не столько удача инженеров-оптиков, сколько венец целой серии рассчетов, экспериментов и испытаний. Объективы же с неважными характеристиками – чаще всего следствие минимума затрат на исследования и испытания, а иногда – и банальное невезение. Впрочем, нередко объективы с качеством изображения «ниже среднего» часто появляются и вследствие компромисса при выборе между оптическим качеством объектива и остальными его характеристиками – ценой, размерами, светосилой…

Диафрагмирование и резкость

Влияние большинства аберраций на резкость изображения можно снизить при диафрагмировании объектива (уменьшении его относительного отверстия). Кривизна поля изображения не устраняется диафрагмированием, но ее влияние (за счет возрастающей при этом глубины резкости) значительно уменьшается. Зато дисторсия и хроматическая разность изображений становятся более заметными на изображении, поскольку как резкость объектива, так и глубина резкости при диафрагмировании возрастают. Однако слишком сильно закрывать диафрагму без особых на то причин также не стоит. Ведь диафрагмирование приводит как к уменьшению уровня аберраций, так и к возрастанию влияния на резкость объектива дифракционных явлений. Дифракция – нарушение прямолинейного закона распостранения лучей света при прохождении вблизи непрозрачных препятствий. Это явление, в шутку называемое физиками «загибанием света за угол», приводит к тому, что та часть лучей света, которая проходит вблизи диафрагмы, несколько меняет свое направление, в итоге приводя к размытию изображения. При достаточно открытых значениях диафрагмы влияние дифракции практически незаметно. Однако, поскольку при диафрагмировании длина окружности диафрагмы уменьшается гораздо медленнее, чем ее площадь, доля «пострадавших» от дифракции лучей увеличивается. Поэтому резкость большинства объективов не будет хороша ни в одном из крайних значений диафрагмы – ни при полностью открытой, ни при полностью закрытой. У большинства объективов резкостные характеристики заметно улучшаются при диафрагмировании на 1.5-2 ступени от полностью открытой диафрагмы, достигают максимума при диафрагме 8-11, а при дальнейшем уменьшении относительного отверстия – плавно падают.

Эти цифры, конечно же, весьма примерные, и касаются в основном объективов для 35мм аппаратуры.

MTF

Резкость объектива – одна из его главных характеристик. Не резкий объектив, даже если он подходит по всем остальным характеристикам, обычно мало кому нужен. Однако чаще всего объектив мы оцениваем довольно просто: если резкость фотографий нас устраивает, то про такой объектив мы говорим «резкий» или «очень резкий», если не всегда устраивает – значит объектив «не очень резкий», а если резкость совсем не нравится – то такой объектив зарабатывает нелестный эпитет «не резкий» или «мыльный». Однако такой метод оценки резкости излишне субъективен – у каждого свои требования к оптике, и своя мерка качества изображения. Ведь кому-то нужно, чтобы при съемке на профессиональные пленки и печати на профессиональном оборудовании резкость отпечатков 20х30 или 30х40 была идеальна не только в центре, но и по краям кадра. Другому же – вполне достаточно, чтобы минилабные отпечатки 10х15 были просто яркими и четкими. Поэтому, чтобы объективы можно было сколько-нибудь объективно сравнить между собой, было придумано немало методик и показателей, иной раз совершенно искусственных. С одной из таких характеристик – разрешающей способностью объектива при фотографировании контрастной миры на полностью открытой диафрагме – фотолюбители нашей страны хорошо знакомы.

На сегодняшний день наиболее информативно оценить и сравнить оптическое качество объективов можно при помощи графиков их частотно-контрастных характеристик (ЧКХ). Метод частотно-контрастных характеристик (или MTF – Modular Transfer Function – функция передачи пространственной модуляции) заключается в исследовании потерь информации при сравнении различных тест-объектов и их изображений, даваемых объективом. В качестве тестовых объектов принято применять «миры», состоящие из наборов параллельных темных линий одинаковой ширины и светлых промежутков такой же ширины между ними. Количество штрихов, умещающихся по ширине на 1 миллиметре изображения миры, называется ее разрешением, а отношение отражающей способности темных полос и светлых промежутков между ними – контрастом миры. Исследование MTF обычно производится с применением нескольких мир – например миры низкого разрешения (10 линий на 1мм) и миры высокого разрешения (30 линий на 1мм). Встречаются и более информативные варианты с использованием большего ассортимента мир.

Смысл тестирования оптики при измерении частотно-контрастных характеристик – исследование степени падения контраста изображения, создаваемого объективом, в сравнении с оригиналом. Если объектив очень хороший, то изображение мало чем отличается от оригинала и по резкости, и по контрасту, а значит значение MTF такого объектива всегда будет близким к 1 (или к 100%, что одно и то же). При падении резкости изображение будет выглядеть более размытым, то есть потеряет контраст и четкость. На графиках ЧКХ отображается зависимость падения контраста изображения на разном удалении от ценра кадра при максимальном относительном отверстии и на диафрагме 8, отдельно для радиального расположения штрихов миры (сагиттальная ориентация) и случая, когда штрихи миры расположены перпендикулярно радиусу (тангенциальная ориентация). В случае зумов семейства графиков MTF строятся для нескольких значений фокусных расстояний.

Теперь немного о том, как интерпретировать графики. Если значения MTF близки к 100%, то объектив будет исключительно резким и контрастным. Качества объективов, имеющих этот параметр на уровне 70-80% и выше, вполне достаточно для большинства работ профессионального уровня. Ну а объектив, чей график опускается ниже 30%-отметки, можно покупать лишь в том случае, если вы в дальнейшем собираетесь печатать только фотографии 10х15см в минилабе. Высокие значения ЧКХ, полученные для миры с высоким разрешением, говорят о том, что даже при значительных увеличениях изображение будет достаточно резким, не «поплывет». Близкие к 100% показатели MTF для миры с низким разрешением свидетельствуют о высокой контрастности объектива. Если при хороших показателях низкочастотной MTF график MTF для миры с высоким разрешением лежит в области низких значений, то исследуемый объектив при хорошем контрасте имеет проблемы с резкостью изображения при больших увеличениях (хотя фотографии небольших форматов будут смотреться отлично). Если высокие значения MTF объектив показывает не только в центре изображения («0» по шкале), но и на расстоянии 10-12мм от него, то резкость такого объектива будет хороша на значительной площади кадра. Ну а если график MTF «доползает» до отметки 15-20мм без резких «обрывов» вниз, то резкость будет, что называется, «от края до края». Чем ближе друг к другу проходят графики MTF для сагиттальной и тангенциальной ориентаций миры, тем лучше у этого объектива исправлен астигатизм, а следовательно – более естественным и «мягким» будет размытие изображения в зоне нерезкости. Ну и, наконец, из сравнения семейств графиков характеристик объектива при максимальном относительном отверстии и задиафрагмированного до f/8, можно сделать вывод о том, насколько его диафрагмирование повышает резкость изображения.

При сравнении разных объективов по их графикам MTF стоит помнить, что процедура тестирования у разных производителей не стандартизована. Да и графики параметра есть в проспектах далеко не всех производителей оптики. Поэтому сколько-нибудь достоверную информацию можно почерпнуть лишь из сравнения объективов одного производителя. Впрочем, есть и варианты для любителей сравнивать оптику разных марок. В сети Интернет доступно немало веб-страничек с результатами внушающих большее или меньшее доверие независимых тестов оптики. Наиболее известная из них – японская www.photodo.com (на английском языке). Но графики ЧКХ – это далеко не исчерпывающая информация об объективе. Самая главная характеристика любого объектива – это изображение, которое он дает. Изображение может устраивать или не устраивать, нравиться или не нравиться, причем совершенно независимо от графиков. Поэтому результатами различных тестирований и отзывами владельцев стоит руководствоваться лишь при предварительном выборе оптики. Ну а окончательное решение о покупке объектива желательно принимать исходя, в первую очередь, из собственных впечатлений.

Просветление объективов

Еще в 30-х – 40-х годах XX века одной из немаловажных характеристик хорошего объектива было, как это ни странно сейчас звучит, минимальное количество границ стекло-воздух. Чем меньше у объектива было оптических компонентов (компонентом называется отдельно стоящая линза или нескольких склеенных вместе линз), тем меньше было потерь, связанных с отражением света при прохождении границы стекло-воздух. А эти потери, если внимательно подсчитать, оказывались в многолинзовых конструкциях довольно значительными. При преодолении каждой границы стекло-воздух отражается порядка 4-7% света (в зависимости от марки стекла). Соответственно, для 6-линзового объектива Planar 50мм 1:2, линзы которого собраны в 4 компонента (8 поверхностей воздух-стекло), показатель пропускания света оказывался порядка 65%, а у Sonnar`а 50мм 1:2, имевшем тоже 6 линз, но собранных в 3 компонента (6 границ воздух-стекло) – ближе к 75%. То есть получалось, что при одинаковой светосиле объектив с меньшим количеством групп линз давал ощутимо более яркое изображение. Но падение светопропускания объектива, требовавшее увеличения экспозиции при съемке, было далеко не самым неприятным эффектом. Ведь свет, отражаясь от поверхностей линз, никуда не исчезает. Многократно переотразившись, до половины «пропавшего» света в итоге все-таки попадает на пленку. Однако в построении полезного изображения этот свет не участвует, создавая на пленке дополнительную равномерную засветку – «вуаль». Вследствие этой засветки, наиболее заметной в случае наличия в кадре больших светлых участков или источников света, контрастность изображения сильно падает, картинка теряет сочность и «бриллиантовость», становясь малоконтрастной, серой, вялой и невыразительной. Кроме того, даже в случае применения более контрастной пленки, светорассеяние приводит к полному исчезновению деталей в тенях изображения. И это была серьезная проблема даже для объективов тех лет, состоявших, как правило, всего из 3-4 компонентов.

Среди нынешних зум-объективов конструкции, состоящие из 15-20 линз, собранных в 10-15 компонентов – явление распостраненное. Однако эти конструкции могли остаться лишь теоретическими разработками, если бы не изобретение промышленных технологий нанесения просветляющих покрытий на поверхность линз. Ведь кому нужен объектив, использующий для построения полезного изображения лишь 5-10% света, и имеющий светорассеяние на уровне 30-40%?

Просветление линз явилось решением этой проблемы. Принцип действия просветляющего покрытия основан на интерференционных эффектах падающего и отраженного света в прозрачной пленке толщиной 1/4 длины волны, имеющей коэффициент преломления света ниже, чем у стекла. Просветляющее покрытие состоит из одной или нескольких пленок толщиной 0.00010-0.00015мм, наносимых на поверхность каждой линзы напылением в вакууме. Уже однослойное просветление позволяет уменьшить коэффициент отражения с 4-7% до 1-2%, а многослойное (в зависимости от количества слоев) – до 0.2-0.5%.

Просветленный объектив имеет не только значительно лучшие показатели светопропускания, но и (что даже более важно!) – лучшую контрастность за счет снижения паразитного светорассеяния. Поэтому подавляющее большинство послевоенных объективов имеет просветление.

Многослойное просветление, широко используемое ведущими производителями оптики с начала 70-х годов, еще выше подняло планку параметров светопропускания и светорассеяния оптики. Из ныне выпускаемой оптики даже самые сложные многоэлементные объективы имеют коэффициент светопропускания не хуже 70-75% при минимальном светорассеянии. Большинство фирм, выпускающих фотографическую оптику, самостоятельно разрабатывает свои особые технологии рассчета и нанесения просветляющих покрытий, обладающих самыми совершенными характеристиками. У ведущих фирм параметры просветляющих покрытий рассчитываются отдельно для каждой линзы каждого объектива, ведь только таким образом можно обеспечить идентичную (или по крайней мере – близкую) цветопередачу всех объективов линейки. Обозначения «T*» на оправах объективов Carl Zeiss и «SMC» на объективах Pentax указывают как раз на наличие такого просветления. Аналогичные системы рассчета ахроматических многослойных просветляющих покрытий применяют и остальные ведущие производители оптики, давая им особые «фирменные» названия (например SSC – Super-Spectra Coating – у Canon, или SIC – Super Integrated Coating – у Nikon), а иногда – просто называя их «мультипросветлением» (Leica) или «ахроматическим покрытием» (Minolta). Многослойное ахроматическое просветление оптики уже давно стало нормой, поэтому большинство производителей даже не упоминают об этом в надписи на оправе объектива.

Рисунок объектива

Когда речь идет о технической фотографии, резкость и контрастность оптики выступают одними из главных ее характеристик. Резким и контрастным объектив сделать непросто, тем не менее многие фирмы, выпускающие оптику, в этом деле преуспели.

Однако иногда бывает, что изображение, которое дает объектив, просто не нравится. При этом формальных претензий к резкости, контрасту и другим объективным параметрам изображения нет, да и с композицией вроде все в порядке. А картинка – совершенно плоская, неживая, отталкивающая. Бывает и наоборот – вроде бы и контраст, и резкость на фотографии совершенно не выдающиеся, а тем не менее чем-то неуловимым изображение на этой фотографии приковывает взгляд.

Вот это что-то неуловимое и называют рисунком объектива. Изображение, которое дает объектив с хорошим рисунком, обычно вызывает положительные эмоции и соответствующие эпитеты – живое, воздушное, чистое, прозрачное, сочное, бриллиантовое, объемное и так далее. Хороший рисунок трудно охарактеризовать несколькими словами. Это и хорошая пластика, то есть способность разделять тончайшие цветовые оттенки в цветной или серые тона в черно-белой фотографии. Это и тщательное, отчетливое, но отнюдь не грубое и не жесткое воспроизведение мельчайших деталей, контуров и линий изображения. Это и сочетание мягкости тональных переходов, различимости деталей как в светах и тенях изображения с достаточным контрастом. Это и плавный, но энергичный переход из резкости в нерезкость. Однако это лишь слова. Хороший рисунок надо увидеть своими глазами, чтобы ясно представить, о чем идет речь.

Если же изображение хочется охарактеризовать словами «сухое», «плоское» или даже «грязное» и «ватное» – то это вполне может быть признаком объектива с плохим рисунком. Безусловно, вину за изображение на фотографии, достойное столь нелестных эпитетов, не стоит возлагать только на объектив. Ухудшить изображение легко можно и на этапах выбора или обработки пленки, и при съемке, и при печати. Поэтому прежде, чем навесить «ярлык» объектива с плохим рисунком, нужно исключить все остальные возможные причины неудачи.

Рисунок объектива зависит от его оптической конструкции, особенностей рассчета его оптических характеристик, а также – от степени диафрагмирования и других параметров съемки. Практически для каждого объектива существуют свои ситуации, свои сюжеты, когда его рисунок проявляется в полной мере. Поэтому к любому из объективов нужно как бы привыкнуть, не торопясь «прочувствовать» характер и особенности даваемого им изображения, чтобы в дальнейшем использовать его наилучшим образом. Или же – заменить на другой, более подходящий объектив.

Bokeh

Достаточно просто определить резкость изображения, но значительно сложнее описать изображение, находящееся не в фокусе. Тем не менее вид изображения (точнее – передача ярких деталей заднего плана и световых бликов), находящегося в зоне нерезкости, может достаточно сильно сказываться на общем восприятии фотографии. При съемке разными объективами в зоне нерезкости получается разное изображение, которое может быть выглядеть лучше или хуже, точнее – более или менее естественно.

Лучше или хуже, приятное или раздражающее – это субъективные оценки людей, которые очень сложно формально описать в виде конкретных величин. Тем не менее, для описания характера изображения, находящегося не в фокусе, применяется термин «bokeh» (читается боке, с ударением на последнем слоге). Этот термин имеет японское происхождение, поскольку первыми акцентировали внимание потребителя на способности хорошего объектива мягко, красиво и естественно размывать нерезкий задний план именно японские производители фотоаппаратуры. Хотя традиционно считается, что наиболее приятные варианты bokeh чаще встречаются у немецких объективов (Carl Zeiss, Leica, Schneider-Kreuznach, Rodenstock).

Наиболее заметными на изображении (даже будучи не резкими) оказываются яркие световые блики, а также мелкие контрастные детали. Объективы, обладающие самым красивым bokeh, передают их в виде приятных круглых размытых пятен без четких границ, а яркость этих пятен плавно падает к краям, где сравнивается с остальным фоном (b). Такой вариант размытия наиболее близок к привычному восприятию, создавая у зрителя впечатление объемности изображения. У объективов с менее приятным bokeh такие же блики на заднем плане будут передаваться менее привычно – например в виде четких однородных кружков с резкими границами (c) или еще хуже – бубликов с яркими границами и темной серединой (d). Иногда изображение бликов может принимать даже форму многоугольника с числом граней по количеству лепестков диафрагмы. В таком случае увеличение (с обычных 5-6 до 9) числа лепестков диафрагмы и способность их образовывать скругленное отверстие (circular aperture) позволяют изменить в лучшую сторону вид bokeh некоторых светосильных и длиннофокусных объективов. Хотя умение объектива строить мягкое и красивое изображение в зоне нерезкости не связано однозначно с конструкцией диафрагмы. Доказательством этому являются, например, объективы Leica, обладающие красивым bokeh и при этом, зачастую, имеющие небольшое число лепестков диафрагмы.

Объектив с хорошим видом bokeh позволяет выделять главное в снимке, не размывая задний план до однородного «киселя». Это помогает мягко и ненавязчиво расставить акценты, убирая с заднего плана только мелкие детали, но не лишая его узнаваемости.

Плохие варианты bokeh, наоборот, превращают задний план в мозаику из четких линий и геометрических фигур с контрастными контурами. В этом случае не резкий задний план, полностью теряя узнаваемость, тем не менее приковывает взгляд (иной раз – даже отвлекая от резкого переднего плана).

Впрочем, рисунок размытия заднего плана у большинства объективов сильно зависит и от сюжета, и от рабочего значения диафрагмы, и от расстояния до объекта съемки, и от других параметров. Поэтому при эксплуатации многих современных объективов (в первую очередь – зумов), в большинстве своем имеющих далеко не идеальный bokeh, есть смысл лишний раз проверить примерный вид не резкого заднего плана, закрыв диафрагму объектива до рабочего значения при помощи репетира диафрагмы (Depth-Of-Field preview). В этом случае появляется возможность подкорректировать вид нерезкого заднего плана на снимке еще до съемки.


Дата добавления: 2021-02-10; просмотров: 73; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!