Примеры и разбор решения заданий тренировочного модуля

Рассмотрим простейшие тригонометрические неравенства.

Начнем рассматривать с неравенства .

Из рисунка 1 видно, что если a>1, то решений данное неравенство не имеет.

Рисунок 1 – Точки пересечения прямой y=a (a>1) с тригонометрической окружностью

Если a=1, то решений такое неравенство также не имеет (рис.2). Однако, если мы изменим знак на (получим неравенство , то решением его будет множество точек, в которых . Это числа .

Рисунок 2 – Общие точки прямой y=1 с тригонометрической окружностью

Рассмотрим теперь значение (рис.3).

Рисунок 3 – Решение неравенства

Видим, что множество решений данного неравенства представляет собой дугу, начало которой в точке (1) , конец в точке (2) N(πarcsina) . В зависимости от знака неравенство (строгое оно или нестрогое) промежуток представляет собой интервал или отрезок. Далее множество промежутков получается прибавлением :

(для строгого неравенства) – множество интервалов;

(для нестрогого неравенства) – множество отрезков.

Если значение a= – 1,то получим следующую картинку (рис. 4):

Рисунок 4 – Общие точки прямой y= – 1 с тригонометрической окружностью

Видно. что если неравенство нестрогое, то решением неравенства является любое действительное число. Если неравенство строгое, то решением неравенства является любое действительное число, кроме чисел вида .

Наконец, если , то решением неравенства является любое действительное число.

Решение неравенства рассмотрим более коротко.

Очевидно, что если , то решением неравенства является любое действительное число.

Если , то решением неравенства является любое действительное число, а решением неравенства является любое действительное число, за исключением чисел вида .

Если , то решением неравенства являются числа вида , а неравенство решений не имеет. То же самое можно сказать о решении неравенств и в случае .

Случай рассмотрим более подробно (рис. 5).

Рисунок 5 – Решение неравенства

Решение неравенства для :

(для строгого неравенства) - множество интервалов;

(для нестрогого неравенства) - множество отрезков.

2. Теперь рассмотрим решение неравенств и .

Рассуждая по аналогии с неравенствами относительно синуса, можем сделать вывод, что для неравенство решений не имеет, а решением неравенства является любое действительное число.

Для неравенство решений не имеет, а решением неравенства является любое действительное число.

Рассмотрим случай более подробно.

Рассмотрим решение неравенства (рис. 6).

Рисунок 6 – Решение неравенства

Множество решений этого неравенства:

.

Теперь рассмотрим неравенство (рис. 7).

Рисунок 7 – Решение неравенства

Множество решений этого неравенства:

.

3. Теперь рассмотрим решение простейших неравенств и .

Сначала рассмотрим неравенство (рис. 8).

Рисунок 8 – Решение неравенства

Множество решений этого неравенства:

.

Соответственно, множество решений неравенства :

.

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Решите неравенство. Заполните пропуски

Решение:

Ведем новую переменную: .

Вспомогательное неравенство имеет вид:

, .

Вернемся к исходной переменной: .

Второе неравенство решений не имеет. Решением первого неравенства является:

.

Ответ: .

Пример 2.

Решите неравенство. Найдите коэффициенты

Решение:

Выразим

Рисунок 9 – решение неравенства

Ответ:

 


Дата добавления: 2021-02-10; просмотров: 58; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!