Устройства с водородным охлаждением
Особенности синхронных генераторов ЭС различных типов (с паровыми, га-зовыми, гидравлическими турбинами).
Синхронные машины – это электрические машины переменного тока, в которых ротор и магнитное поле токов статора вращаются синхронно
Ротор должен вращаться с частотой вращения поля, следовательно, его синхронная частота вращения
n = 60 f /р = 3000об/мин. (тихоходные гидрогенераторы)
Синхронные генераторы, вращаемые паро- и газовыми турбинами, называются турбогенераторами, а вращаемые гидравлическими турбинами — гидрогенераторами.
Для генераторов с большим, чем единица, числом пар полюсов частота вращения роторов будет частным от деления 3000 на число пар полюсов, об/мин: 1500, 1000, 750, 600 и т.д. (для 50Гц)
Турбогенератор, вращаемый паровой или газовой турбиной, имеет горизонтально расположенный вал опирающийся на два подшипника скольжения.
Масса электрической машины возрастает с уменьшением частоты ее вращения. Гидрогенераторы имеют частоту вращения, примерно в 6—60 раз меньшую, чем турбогенераторы. Эта разница обусловлена различием типов применяемых в этих машинах паровых, газовых и гидравлических турбин, а также зависит от характера используемых для ГЭС водных источников (расхода воды, уклона водопотока, рельефа местности при учете экономической целесообразности эксплуатируемой зоны). Из-за более низких частот вращения гидроагрегатов общие массы гидрогенераторов достигают 1,5—2 тыс.т и в несколько раз превышают массы аналогичных по мощности турбогенераторов. Это делает невозможным применение горизонтального расположения валов с более простыми подшипниками скольжения.
Диаметры роторов турбогенераторов, вращающихся со скоростью 3000об/мин, не превышают 1,1—1,25м при длине ротора до 8м. Роторы гидрогенераторов достигают в диаметре 15—20м при длине до 5м.
Основной задачей турбогенератора является трансформация механической энергии паровой либо газовой турбины в электрическую. Осуществляется это при большой скорости вращения ротора (от 3000 до 15000 оборотов в минуту).
Циркуляция воды в теплообменниках и газоохладителях происходит при помощи насосов, которые располагаются вне самого турбогенератора.
2)Паровой турбогенератор
Паровой турбогенератор обладает повышенной надежностью своей работы, при этом развивая проектную мощность постоянно на протяжении многих часов работы. Такие современные устройства могут обладать мощностью до 1300 МВт. Зачастую, паровые турбогенераторы могут работать параллельно. Передача мощности при этом может осуществляться в одну электрическую цепь.
Тепловая экономичность электростанции, в которой установлен паровой турбогенератор, напрямую зависит от видов и параметров теплового цикла использования тепла образовавшегося пара, а также от самого оборудования и его характеристик.
Зачастую, паровая турбина турбогенератора, обладающая небольшой мощностью, монтируется в промышленных котельных, там где используется мазута или твердое топливо. Турбины тут функционируют в качестве дросселирующих устройств редукционно-охладительных установок, на разнице величины давления от котла до промышленного отбора, либо же теплообменника. /p>
Мощность турбогенератора, работающего в данной отрасли, находится в пределах от 250 киловатт до 5 Мегаватт. Такая установка позволяет получить очень дешевую электрическую энергию. Она получается в восемь раз дешевле покупной. А все оборудование, при работе больше чем 5000 часов в год, сможет быстро окупить себя, уже за три года.
Паровая турбина турбогенератора маленькой нагрузки может применяться не только лишь в качестве привода электрогенератора, но также и для приведения в действия устройств, необходимых для работы котельных любого назначения.
Охлаждение турбогенераторов
Турбогенераторы с воздушным охлаждением
Изготавливаются такие агрегаты нагрузкой в 2,5; 4; 6; 12 и 20 МВт. Конструкция таких устройств осуществляется закрытым типом. Самовентиляция обеспечивается по закрытому циклу. Вращение воздуха в турбогенераторе происходит благодаря вентиляторам, которые закрепляются с обеих сторон внутри ротора.
Для того, чтобы избежать проникновения пыли вовнутрь, на валу имеются специальные воздушные уплотнители. А утечка воздуха компенсируется благодаря его засосу из внешней среды.
Устройства с водородным охлаждением
Это устройства, мощность которых составляет 60 и 100 Мегаватт.
Охлаждение турбогенератора, а именно роторных обмоток, исполняется напрямую водородом. Статор охлаждается косвенно и обдает сварную оболочку, которая газонепроницаема и неразъемная.
Агрегаты, охлаждаемые водой
Обмотки ротора и статора устройств такого типа охлаждаются при помощи непосредственной подачи воды. Сталь сердечника статора отстужается при помощи специально предназначенных охладителей, изготовленных из силумина. Воздух, который заполняет сам генератор, охлаждается водой.
3)ПГУ обладают рядом преиму- ществ по сравнению с традицион- ными газовыми и угольными электростанциями:
· Более высоким КПД – до 60 %;
· По сравнению с возведением обычной паротурбинной электро- станции более низкими капитальными затратами и сжатыми сроками строительства за счет блочной конфигурации ПГУ;
· Низким уровнем выбросов по сравнению с традиционными уголь- ными станциями.
В ПГУ мы раскручивает турбину с помощью давления создаваемое от сжигария газа. Оставшуюся тепловую энергия можно использовать в котле для получения пара или отопления.
10) Особенности силовых трансформаторов и автотрансформаторов ЭС и под-станций.
Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12 – 25% ниже, расход активных материалов и стоимость на 20 – 25% меньше, чем в группе трех однофазных трансформаторов такой же суммарной мощности.
Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка.
По количеству обмоток различного напряжения на каждую фазу трансформаторы делят на двухобмоточныеи трехобмоточные. Обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, индуктивно не связанных, изолированных друг от друга и от заземленных частей. Такие трансформаторы называются трансформаторами с расщепленными обмотками. Обмотки высшего (ВН), среднего (СН) и низшего (НН) напряжения
К основным параметрам трансформатора относят: номинальные мощность, напряжение, ток, напряжение КЗ, ток ХХ, потери ХХ и потери КЗ.
Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.
+Номинальная мощность для двухобмоточных трансформаторов – это мощность каждой обмотки. Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную мощность принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.
За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон, имеющих между собой автотрансформаторную связь («проходная мощность»).
Номинальное напряжение обмоток – это напряжение первичной и вторичной обмоток при холостом ходе трансформатора. Для трехфазного трансформатора – это его линейное напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду, - это
.
Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют по её номинальной мощности и номинальному напряжению.
Напряжение короткого замыкания
(% или о.е.) - это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в последней проходит ток равный номинальному. Напряжение КЗ характеризует полное сопротивление обмоток трансформатора и в относительных единицах равно ему.
В трехобмоточных трансформаторах и автотрансформаторах напряжение КЗ определяется для любой пары его обмоток при разомкнутой третьей обмотке. Соответственно, в каталогах приводятся три значения напряжения КЗ:
. Величина
регламентируется в зависимости от напряжения для силовых трансформаторов от 5,5% при
до 80% при
.
Увеличивая значение
можно уменьшить токи КЗ на вторичной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость трансформатора. Если, например, трансформатор 110 кВ, 250 МВ∙А выполнить с
вместо 10%, то расчетные затраты на него возрастут на 16%, а потребляемая реактивная мощность возрастет вдвое (с 2,5 до 5,0 МВ∙А).
Ток холостого хода
характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции.
Ток холостого хода выражается в процентах от номинального тока трансформатора.
Потери холостого хода
и короткого замыкания
определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи. Для уменьшения их применяется электротехническая сталь с малым содержанием углерода и специальными присадками, холоднокатанная сталь с жаростойким изоляционным покрытием, а также шихтовка стали сердечника.
Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и элементах конструкции трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и в конструктивных элементах трансформатора. Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экранируется магнитными шунтами
Потери энергии в трансформаторах приводят к нагреву обмоток и магнитопровода, что ускоряет старение изоляции обмоток – бумаги, тканей, лаков и других материалов. Процесс старения ведет к изменению исходных электрических, механических и химических свойств материалов, то есть износу трансформатора.
Чтобы замедлить процесс износа трансформатора и увеличить одновременно передаваемую им мощность, используются охлаждающие устройства. Принято считать, что охлаждающее устройство масляного трансформатора (для силовых трансформаторов и автотрансформаторов в качестве охлаждающей жидкости используется трансформаторное масло) состоит из системы внутреннего охлаждения,обеспечивающей передачу теплоты от обмоток и магнитопровода охлаждающему маслу, и системынаружного охлаждения,обеспечивающей передачу теплоты от масла окружающей среде.
Дата добавления: 2021-02-10; просмотров: 99; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!
