ИЗ ЧЕГО СОСТОЯТ СОЛНЦЕ И ЗВЕЗДЫ



 

Защитники идеалистического религиозного мировоззрения, уверяя, будто мир непознаваем, утверждали в виде примера, что человек никогда не сможет узнать химический состав далеких небесных тел. Однако развитие материалистической науки посрамило подобные утверждения. Химический состав небесных тел удалось выяснить при помощи так называемого спектрального анализа. В приборе спектроскопе свет через узкую щель попадает на стеклянную трехгранную призму и в ней разлагается на свои составные части. Получается полоска, называемая спектром. Дело в том, что твердые и жидкие раскаленные вещества дают непрерывный или сплошной спектр: в нем, в этой радужной полоске, содержатся без перерыва все цвета спектра, все длины волн.

 

 

Получение спектра.

Направим на щель спектроскопа луч солнечного света. Что мы тогда увидим?

Оказывается, что спектр Солнца – непрерывный, но он перерезан поперек своей длины какими‑то узкими темными линиями. Непрерывный спектр, перерезанный такими линиями, называется спектром поглощения. Так же выглядят и спектры звезд.

Вскоре после того, как в спектре Солнца были обнаружены темные линии, некоторые из ученых обратили внимание на такое явление: в желтой части этого спектра есть темная линия, которая занимает то же положение, что и яркая желтая линия в спектре разреженных светящихся паров натрия. Что это означает? Для выяснения вопроса ученые сделали специальный опыт.

Был взят раскаленный кусок извести, дающий непрерывный спектр без всяких темных линий. Затем перед этим куском извести было помещено пламя газовой горелки, содержащей пары натрия. Тогда в непрерывном спектре, полученном от раскаленной извести (свет которой прошел через пламя горелки), появилась в желтой части темная линия. Стало ясно, что пары натрия, сравнительно более холодные, чем известь, поглощают или задерживают те же самые лучи, которые эти пары сами по себе способны испускать.

Подобные опыты были повторены и с разными другими веществами. Таким образом, было окончательно установлено следующее: светящиеся газы и пары поглощают тот самый свет, который они сами способны испускать, будучи достаточно нагреты.

Так была раскрыта тайна появления темных линий в солнечном спектре.

Очевидно, Солнце или звезду – раскаленное тело, испускающее белый свет, спектр которого непрерывен – окружает слой более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, поглощающие из лучей солнечного спектра лучи, которые натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.

Так, не побывав никогда на Солнце и звездах, находящихся от нас на колоссальных расстояниях, мы можем утверждать, что в составе атмосферы Солнца и звезд есть натрий.

Таким образом было точно определено, какие еще химические элементы входят в состав солнечной атмосферы.

Установили присутствие в солнечной атмосфере множества известных нам на Земле химических элементов. Среди них находятся: газы – водород, азот; металлы – натрий, магний, алюминий, кальций, железо и многие другие. В 1942 году было обнаружено присутствие на Солнце золота, хотя и в небольшом количестве.

 

 

Виды спектров: 1 – непрерывный, в котором цвета переходят друг в друга, как в радуге; 2 – спектр поглощения; темные линии перерезают непрерывный спектр; 3 – спектр излучения из ярких цветных линий.

Такие химические элементы, как, например, хлор, бор, иод, ртуть и некоторые другие, не были найдены на Солнце по их линиям в спектре. Одной из причин, возможно, является то, что эти элементы находятся не в атмосфере Солнца, а в его недрах. Между тем темные линии в спектре вызывают только те элементы, которые находятся в атмосфере Солнца и поглощают свет, идущий из более глубоких и более плотных, раскаленных слоев Солнца.

Итак, можно допустить, что такие химические элементы, как хлор, бор, иод, ртуть и другие, на Солнце или в солнечной атмосфере имеются, но мы их обнаружить еще не можем.

Спектры звезд, свет которых (собранный с помощью телескопа) тоже можно направить в спектроскоп, похожи на спектр Солнца. И по их темным линиям мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.

Оказывается, химический состав атмосфер звезд мало отличается от химического состава Солнца и нашей Земли. Во всяком случае (это чрезвычайно интересно и важно), ни на Солнце, ни на звездах не найдено таких химических элементов, которые не были бы известны на Земле. Напомним, что и газ гелий, который сначала был обнаружен на Солнце, потом был найден на Земле.

По четкости, с которой видны темные линии спектров Солнца и звезд, можно определить долю каждого химического вещества в составе их атмосфер.

Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры. Это подтверждает материальное единство Земли и вселенной, вопреки религиозным утверждениям о мнимом отличии земного от всего небесного.

Самый легкий из всех газов, из всех химических элементов – водород – составляет на Солнце 42 процента по весу. На долю кислорода приходится 23 процента по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе 6 процентов от состава солнечной атмосферы. И только 6 процентов приходится на все остальные элементы.

Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца и звезд девяносто атомов принадлежит водороду.

 

НЕОБЫКНОВЕННЫЕ ЗВЕЗДЫ

 

Спектральный анализ позволяет открывать нам многое из того, что совсем не видно глазу. Приведем интересный пример.

Есть такие звезды, которые, если рассматривать их в телескоп, оказываются двойными, то‑есть каждая состоит из двух звезд. И обе они обращаются одна около другой по закону всемирного тяготения, так же как наша Земля обращается вокруг Солнца. Иногда из этих двух солнц одно бывает красным, другое – голубоватым. Представьте себе, какая поразительная игра красок, какая удивительная смена дней должна происходить на какой‑нибудь планете, обращающейся около одного из этих солнц. Голубой день следует за красным, а иногда на небе одновременно сияют два цветных солнца. Природа и в мире звезд бесконечно разнообразна.

Есть такие двойные звезды, которые либо очень близки одна к другой, либо находятся от нас так далеко, что их свет сливается вместе, даже если рассматривать эти звезды в самые сильные телескопы. И в этих случаях, когда телескоп никак не может нам помочь установить, что здесь – одна звезда или две, спектральный анализ безошибочно вскрывает картину, точно устанавливает истину. Поясним, как это происходит.

Свет звезд, очень близких одна к другой, сливается. В таком виде он попадает в наш спектроскоп. Но при своем взаимном обращении звезды поочередно движутся одна к нам, а другая от нас, и поэтому спектры их – один относительно другого – смещаются. Тогда в слившемся спектре двух звезд мы замечаем, что одни линии смещаются к фиолетовому концу спектра, а другие – к красному, и наоборот. Известный советский ученый А. А. Белопольский доказал на опытах, что смещение спектральных линий происходит вследствие движения источника света относительно наблюдателя. А отсюда мы заключаем, что одни линии спектра в одном случае принадлежат одной звезде, а другие – другой.

Двойные звезды настолько «выдают» себя по спектру, что мы не только узнаем о их существовании, но даже можем определить время их обращения, скорость, с которой они движутся как одна относительно другой, так и обе вместе по отношению к нам.

Спектральный анализ помог окончательно «разоблачить» истинную природу звезды, которую арабы в древности прозвали Алголем, то‑есть «звездой дьявола».

 

 

В системе двух звезд Алголя менее яркая звезда, обращаясь вокруг более яркой, по временам частично затмевает ее (в положении А – наверху). В середине это показано в плане. Внизу – кривая, представляющая соответствующее изменение видимого блеска системы Алголя с течением времени.

Дело в том, что большую часть времени яркость Алголя в созвездии Персея остается постоянной, затем в течение четырех с половиной часов его яркость начинает ослабевать и, ослабев в несколько раз, в течение следующих четырех с половиной часов снова восстанавливается. Позднее выяснилось, что такие падения блеска происходят строго периодически: через каждые 2 дня 20 часов 49 минут яркость Алголя становится наименьшей.

Было высказано такое предположение: Алголь состоит не из одной, а из двух звезд, обращающихся одна около другой. Из них одна яркая, а другая почти темная. Периодически более темная звезда проходит перед яркой и затмевает ее, так же как для жителей Земли Луна временами затмевает Солнце.

Спектральный анализ полностью подтвердил это предположение. Ученые точно установили, что яркость Алголя бывает наименьшей тогда, когда из‑за звезды выглядывает только кусочек главной яркой звезды. В это время яркая звезда, как и следовало ожидать, движется по своему пути поперек того направления, по которому мы на нее смотрим. Поэтому она к нам не приближается и не удаляется, и линии ее спектра занимают нормальное положение. В остальное же время яркая звезда, несясь почти по кругу около второй звезды, либо приближается к нам, либо удаляется, и линии ее спектра оказываются смещенными.

Кроме Алголя, известно еще много других звезд, которые, как нам кажется, меняют свою яркость, что является следствием периодически повторяющихся затмений одной звезды другой.

Но есть еще другой тип звезд, меняющих свою яркость. Это переменные звезды, называемые цефеидами. В противоположность Алголю, цефеиды не через какой‑то промежуток времени, а непрерывно изменяют свою яркость, то усиливаясь в блеске, то ослабевая. Эти изменения тоже происходят строго периодически, с правильностью часового механизма, вернее сказать – точнее, чем часовой механизм.

Спектральный анализ помог объяснить эти странные колебания блеска цефеид. Оказалось, что цефеиды – это пульсирующие звезды, которые периодически сжимаются и расширяются, как надувной резиновый шарик. Когда они расширяются, то поверхность их приближается к нам, а когда они сжимаются, то их поверхность, обращенная к нам, удаляется от нас. Наибольшей яркости эти звезды достигают, однако, не тогда, когда их размеры наибольшие, а, наоборот, тогда, когда их размеры наименьшие. Объясняется это тем, что при сжатии звезд их температура увеличивается и они излучают тогда больше света. Советские ученые имеют громадные заслуги в изучении таких звезд с переменным блеском, и они, по международному соглашению, ведут учет таких звезд, в какой бы стране эти звезды ни открывались.

По сравнению со звездами, периодически изменяющими свою яркость, еще более загадочными казались так называемые «новые» звезды. Речь идет о таких звездах, которые изредка и неожиданно вспыхивают в том месте неба, где раньше никакой звезды не было видно. Бывало, что вспышки новых звезд впервые замечались школьниками, хорошо знающими звездное небо.

Теперь установлено, что на самом деле это не возникающие вновь звезды, а звезды, внезапно и катастрофически усилившиеся в блеске. До своей вспышки такие звезды бывают очень слабыми, и так как они находятся от нас чрезвычайно далеко, то невооруженным глазом их не видно. Затем по какой‑то причине блеск такой звезды за несколько десятков часов увеличивается в десятки тысяч раз. Бывает даже так, что на короткое время новая звезда становится самым ярким светилом неба после Солнца и Луны. Такое сверкание продолжается недолго: через несколько лет, постепенно угасая, новая звезда возвращается к своему прежнему состоянию. Столь яркие вспышки новых звезд наблюдаются несколько раз в столетие.

Почему же изменяется яркость так называемых новых звезд? Ответ на этот вопрос дал спектральный анализ. Он показал, что увеличение яркости новой звезды происходит оттого, что ее атмосфера внезапно и очень быстро увеличивается. Тогда, подобно мыльному пузырю, звезда расширяется во все стороны. Расширение происходит со скоростью сотен километров в секунду. А поверхность звезды, обращенная к нам, в это время приближается в нашу сторону с такой же скоростью. Увеличение светящейся поверхности и вызывает увеличение силы света звезды.

Но этим явление не ограничивается.

Все расширяющаяся газовая атмосфера новой звезды в какой‑то момент становится настолько разреженной, что ее свечение ослабевает. Газы, выброшенные звездой, несутся тогда в пространство по всем направлениям, причем скорость их еще более увеличивается и доходит уже до тысячи и более километров в секунду. Через несколько лет эти газы рассеиваются в мировом пространстве, а сама звезда, претерпевшая катастрофу (которая, однако, не приводит к полному разрушению звезды), теряет большую яркость и продолжает светиться в глубинах мироздания так же слабо, как до катастрофы. Но при этом ее природа все же несколько меняется. Мы видим здесь проявление скачкообразного развития в природе, отмеченное марксистской философией.

 

ДВИЖЕНИЯ ЗВЕЗД

 

Кажущаяся неизменность видимого расположения звезд в созвездиях не означает неподвижности этих светил в пространстве. Они несутся во вселенной по определенным орбитам со скоростями в несколько десятков километров в секунду, как это позволяют установить спектральный анализ и другие способы исследования. Однако огромный путь, проходимый звездой за год, так мал в сравнении с расстоянием до нее, что для невооруженного глаза он совершенно незаметен.

Лишь из сравнения фотографий звездного неба, сделанных телескопами с промежутком времени в несколько десятилетий, удается установить крошечные перемещения некоторых звезд, выражающиеся на фотографиях тысячными долями миллиметра.

По отношению к ближайшим звездам вся наша солнечная система как целое несется в мировом пространстве со скоростью 20 километров в секунду. Ее бег направляется в сторону звезд созвездий Лиры и Геркулеса. Даже ближайшие звезды, расположенные в этом направлении, так от нас далеки, что за десятилетие нельзя обнаружить ни малейшего заметного изменения в их блеске вследствие нашего приближения к ним. Расстояния между звездами так громадны в сравнении с их размерами, что возможность столкновения для них почти исключена. Они могут сталкиваться не чаще, чем несколько пылинок, летающих внутри зала Большого театра в Москве. По мере нашего приближения к созвездию Лиры его звезды как бы расступаются перед нами, подобно деревьям в редком лесу, когда мы по нему идем.

 

ГАЛАКТИКА

 

Кое‑где в мировом пространстве разбросаны целые звездные кучи. К их числу относится звездное скопление Плеяды в созвездии Тельца, хорошо видимое даже без бинокля. Но в других местах неба сотни, а иногда сотни тысяч звезд удерживаются друг возле друга действием взаимного тяготения. Когда на такую звездную кучу направлен сильный телескоп, то все поле зрения усыпано сверкающей пылью. Каждая такая искорка света – это далекое солнце, в большинстве случаев гораздо более яркое, чем наше. Наше Солнце, помещенное среди такого скопления звезд, было бы невидимо ни в телескоп, ни на фотографии.

Сам Млечный Путь – эта широкая светлая полоса, лучше всего видимая на небе в ясную осеннюю ночь – представляет собой скопище огромного множества далеких солнц, свет которых сливается в сплошное сияние, слабое вследствие их отдаленности.

Сравнительно недавно установили, что все отдельные звезды созвездий, звездных куч и Млечного Пути образуют единую гигантскую звездную систему, называемую Галактикой.

 

 

Общий вид половины того кольца, которым Млечный Путь опоясывает все небо.

Звезды, составляющие Галактику, расположены в пространстве так, что по общим очертаниям Галактика напоминает линзу, чечевицу или карманные часы. Глядя на нее в одном направлении, мы бы назвали ее круглой, а по другому направлению она бы имела вид веретена или толстой сигары. Чем ближе к центру Галактики и чем ближе к ее средней плоскости, тем гуще расположены звезды.

Солнечная система находится ближе к краю Галактики, чем к ее центру. Однако солнечная система расположена вблизи экваториальной плоскости этой звездной системы. Поэтому при наблюдении в этой плоскости наш взор по всем направлениям встречает наибольшую массу звезд. Это и создает картину Млечного Пути в виде светлого кольца, в центре которого мы как будто находимся. Наибольшее протяжение по отношению к нам звездная система имеет по направлению к центру Галактики. Там находится больше всего звезд, и поэтому в направлении к центру Галактики Млечный Путь кажется наиболее ярким. Центр Галактики виден в сторону созвездия Стрельца, которое находится летом невысоко над южной частью горизонта.

В средней полосе СССР светлые летние ночи мешают любоваться красотой Млечного Пути в этой ярчайшей его части, но в южных областях нашей страны, где летом ночи темнее, звездные облака Млечного Пути в созвездии Стрельца выступают во всей своей красоте. Однако и на юге самый центр нашей звездной системы невидим, так как его заслоняют огромнейшие непрозрачные облака тончайшей пыли, расположенные в межзвездном пространстве.

Советским ученым недавно, впервые в истории, удалось сфотографировать центр Галактики, применяя особые, новые методы.

Все звезды под действием тяготения к центру Галактики обращаются вокруг него, хотя центр Галактики образован скоплением множества обычных звезд, среди которых нет какой‑либо особенно громадной звезды, играющей для Галактики такую же роль, как Солнце играет в солнечной системе. Скорости, с которыми звезды обращаются вокруг центра Галактики, различны. Звездное облако, к которому принадлежит Солнце и в центре которого оно движется со скоростью 20 километров в секунду, в то же время несется вокруг центра Галактики со скоростью около 250 километров в секунду и совершает полный свой оборот вокруг него примерно за двести двадцать пять миллионов лет.

 

 

Схематический вид нашей звездной системы – Галактики.

ДРУГИЕ ЗВЕЗДНЫЕ СИСТЕМЫ

 

С давних пор исследователи неба замечали среди звезд небольшие светлые туманные пятна, которые были названы туманностями. Было выяснено, что многие из них имеют спиральную форму. Самая большая из таких спиральных туманностей расположена в созвездии Андромеды и видна невооруженным глазом как слабое, туманное пятно. Лишь на фотографии выделяется его спиральное строение. В таких туманностях из яркого туманного центра выходят два или несколько светящихся рукавов, заворачивающихся вокруг ядра по спирали наподобие часовой или патефонной пружины. Эти спиральные образования довольно плоские, и когда они повернуты к нам боком, как, например, туманность Андромеды, то они выглядят продолговатыми, имеют овальную форму. Когда же они повернуты к нам своим ребром, то‑есть экваториальной плоскостью, то представляются в виде веретена.

 

 

Далекая галактика, на ребре которой видны темные туманности, состоящие из пыли.

Удалось установить, что такие спиральные туманности являются гигантскими звездными системами, расположенными далеко за пределами нашей Галактики и имеющими размеры, сравнимые с нею.

От одного края нашей Галактики до другого свет идет почти сто тысяч лет, а от ближайшей к нам такой же звездной системы в созвездии Андромеды свет идет почти миллион лет. Такие звездные системы тоже называются галактиками, но, в отличие от нашей Галактики, пишутся с маленькой буквы. Галактики содержат десятки миллиардов солнц. Самому большому из современных телескопов доступно для исследования более миллиона подобных звездных систем.

Самые далекие из них выглядят на фотографии как едва заметные, маленькие, слабые пятнышки и находятся на расстоянии, которое свет пробегает за миллиард лет. Для сравнения напомним, что от звезды до звезды в окрестностях Солнца свет идет только несколько лет, а от Солнца до Земли – восемь минут.

 

ГАЗОВЫЕ И ПЫЛЕВЫЕ ТУМАННОСТИ

 

 

«Угольный мешок» в Млечном Пути – это облако пыли, не пропускающее света.

 

В пространстве между звездами, иногда обволакивая их, и в нашей Галактике и в других галактиках находятся колоссальные облака крайне разреженного вещества. Одни из них состоят из мельчайшей пыли и мешают видеть далекие звезды. На фоне сияющего Млечного Пути такие туманности, поглощающие свет, выглядят как черные пятна или дыры. Особенно бросающиеся в глаза черные пятна, видимые на небе Южного полушария, мореплаватели прозвали «угольными мешками». Когда пылевые облака, странствуя между звездами, приблизятся случайно к какой‑либо очень яркой звезде, она осветит их, и мы увидим пылевое облако в виде светящейся туманности с расплывчатыми очертаниями.

 

 

Большая диффузная газовая туманность в созвездии Ориона.

Другие туманности состоят из крайне разреженного газа, в основной массе – водорода. Они светятся только под воздействием света наиболее горячих звезд. Одну из таких туманностей в созвездии Ориона в ясную зимнюю ночь можно увидеть в обыкновенный бинокль под тремя яркими звездами, образующими «пояс» фигуры мифического охотника Ориона. Свет туманностей так слаб, что большинство их можно видеть лишь на фотографиях, снятых сильными телескопами. Много новых туманностей открыто у нас на крымской обсерватории академиком Г. А. Шайном, применившим особый, новый метод их фотографирования.

 

 

Планетарная газовая туманность.

Среди газовых туманностей около трехсот называются планетарными, но это название неудачно, так как эти туманности ничего общего с планетами не имеют. Они сравнительно маленькие, хотя гораздо больше, чем солнечная система. У них правильная форма и довольно резкие края, а в центре их находится звездочка. Эти звездочки – ядра планетарных туманностей – принадлежат к самым горячим звездам. Температура их поверхности достигает сотни (и более) тысяч градусов. Советский ученый В. А. Амбарцумян заложил основы теории, изучающей строение таких туманностей, понемногу расширяющихся в пространстве.

Пространство между звездами и туманностями также не совершенно пустое. Оно заполнено еще более разреженным газом и мелкими пылинками. В этой среде и несутся звезды, в том числе наше Солнце с окружающими его планетами.

Автором этой книжки было доказано, что многие горячие звезды выбрасывают со своей поверхности в мировое пространство огромное количество газа, которое, накапливаясь в пространстве между звездами, и образует газовые туманности. Возможно, что с течением времени эти газы сгущаются в мелкие пылинки и превращаются в туманности пылевые, которые, в свою очередь, может быть, сгущаются в звезды и планеты.

Во всяком случае, наука о небесных светилах, в согласии с мировоззрением диалектического материализма, показывает, что материя не только крайне разнообразна, но и испытывает непрерывные видоизменения, что она подвержена вечному движению и развитию в силу заложенных в ней свойств.

Это развитие происходит по законам природы и не зависит ни от каких сверхъестественных сил, придуманных людьми в период их невежества. Вера в эти сверхъестественные силы поддерживается, однако, представителями капиталистического мира в своих интересах. Их задачей является внушить трудящимся, что все произошло по воле божества, в том числе и эксплоататорский строй общества, против которого не надо поэтому даже протестовать.

 

ЧЕЛОВЕК ПОЗНАЁТ МИР

 

По религиозным воззрениям, вселенная ограниченна; когда‑то она была вся сразу создана по воле бога и также вся сразу может будто бы погибнуть. Многие лжеученые капиталистических стран пытаются исказить выводы науки, подделывая их под религиозное мировоззрение, которое капиталистам выгодно поддерживать в народе. Так, эти лжеученые пробовали не раз утверждать, что вселенная конечна, то‑есть имеет определенные размеры, за которыми вещества, материи больше нет и где могут находиться сверхъестественные силы, будто бы и создавшие эту, по их понятиям маленькую, вселенную.

Однако, по мере того как строятся все более мощные телескопы, границы мира, доступные нашему изучению, становятся все шире и шире. Все более далекие звездные системы становятся доступными для исследования, и это подтверждает, что, вопреки утверждениям идеалистов, вселенная в целом не имеет ни конца, ни границ. По какому бы направлению мы ни стали двигаться, мы будем без конца встречать все новые и новые небесные миры. Эти небесные миры находятся в состоянии вечного движения и развития. Одни из них, так же как растения на Земле, возникают, развиваются, другие отживают свой век, старятся, и их вещество переходит в другую форму существования. У вселенной нет конца ни в пространстве, ни во времени. Она никогда не была создана и никогда не погибнет. Она существовала всегда и будет существовать вечно, но все в ней вечно изменяется и преобразуется.

Человек имеет возможность, материалистически подходя к изучению природы, неограниченно познавать ее вглубь и вширь и извлекать для себя пользу из этих знаний. Являясь частью природы, но неограниченно познавая ее законы, он все больше и больше побеждает природу и заставляет ее служить себе. Однако только в нашей стране, быстро идущей по пути к коммунизму, народ, освобожденный от всяких суеверий и предрассудков, действительно становится властелином природы и создателем новой, счастливой жизни.

 

 


[1] Звезды, расположенные в той стороне, куда направлена ось Земли, бывают видны и летом и зимой, но занимают различные положения относительно горизонта в один и тот же вечер. Вблизи направления земной оси видна довольно яркая звезда, называемая Полярной, которая никогда не меняет своего положения над горизонтом. Под этой звездой на горизонте находится точка севера. Поэтому Полярной звездой можно пользоваться вместо компаса.

 


Дата добавления: 2021-01-21; просмотров: 86; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!