Lt; 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы - электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m



Розенталь Э Л

Геометрия, динамика, вселенная

 
 Э Л Розенталь

 

 


       И.Л.Розенталь

       ГЕОМЕТРИЯ, ДИНАМИКА, ВСЕЛЕННАЯ

       А Н Н О Т А Ц И Я

       Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

       R E A D M E

       Существует добрая традиция набирать и распространять на носителях только художественную или специальную литературу. Но эта книга показалась мне столь интересной, несмотря на уже достаточно давний год издания, что я решил ее набрать. В свое время поразительным образом получила широкую известность теория относительности Эйнштейна, что в общем-то крайне удивительно, если учесть косность интересов обывателя. Говорят, что в свое время даже выпускались брошюры типа "теория относительности для домашних хозяек". Вероятно, сама мысль о том, что мир может быть абсолютно не таким, каким он кажется нам с нашими органами чувств и бытовым опытом была такой потрясающей, что вызывала интерес даже у людей далеких от физики.

       С тех пор физика несколько ушла вперед. Но интерес к тому, в каком же мире мы живем, уже успел быстро угаснуть, как угасает и всякая газетная сенсация. А вопрос весьма-таки интересный - поскольку мир действительно вовсе не такой, каким кажется. И вопросы о том, сколько измерений он имеет, ПОЧЕМУ он такой, а не другой и т.п. кажутся относящимися скорее к области фантастики или религии, чем науки. А уж то, что на них возможно дать ответ - это уже воспринимается, как абсолютная фантастика. Кстати, к вопросу о религии - слова о "целенаправленности" развития мира, о "запланированности" появления наблюдателя и т.п. звучат в устах современного физика просто потрясающе - не потому ли многие из великих физиков совершенно сознательно становились людьми верующими, хотя об этом и не принято говорить. Не менее интересным является и вопрос о том, КАК рождался наш (да и в общем-то не только наш) мир и что с ним теперь происходит. А уж вопрос, что с ним будет дальше - и вовсе животрепещущ.

       Подход автора данной книги в этим вопросам очень необычен. Другие авторы предпочитают этих вопросов просто не касаться. И вообще поднятие их (этих вопросов) в физике рассматривается как "дурной тон". Но в то же время на большинство из них физика уже вполне в состоянии ответить если только дать себе труд немного пошевелить мозгами. Современные ученые крайне не любят вопросов "Почему?", поскольку это вопросы, которые могут пошатнуть незыблемые твердыни науки, на коих покоится благополучие и благосостояние как самой науки, так и всех ученых при ней. А вопросы эти гораздо более актуальные, чем "Как?". Хотя и этих последних ученые тоже не любят. Они вообще не очень любят вопросы. И не очень любят излагать нормальными человеческим словами и понятиями, до чего же они докопались, видимо, справедливо полагая, что их могут при этом принять за сумасшедших. И отсюда и начинают вылезать всякие "вектора состояний", вращающиеся в "фазовых пространствах" и пр., поскольку если вы заговорите о измерениях выше третьего, то вас немедленно отнесут к братству или сумасшедших, или фантастов. А в то же время физика сегодня уже могла бы рассказать очень много интересного и о нашем мире, и о других мирах - если оторваться от многоэтажных формул и весьма непонятных значков и трудновыговариваемых слов и произнести все нормальным человеческим языком. Удивительно, но большинство этих хитростей можно буквально "объяснить на пальцах". Этим, собственно, и отличается физика от многих других наук.

       Эта книга как раз позволяет достаточно наглядно и просто понять и представить себе тот мир, в котором мы НА САМОМ ДЕЛЕ обитаем. Не тот, который мы привыкли видеть по дороге от кухни до сортира, а тот, который НА САМОМ ДЕЛЕ существует и который мы часто просто - увы - не в состоянии воспринять. Но в состоянии о нем догадаться, в состоянии его понять. И мир этот оказывается фантастически красивым, гармоничным, настолько многообразным, что нам даже не всегда удается его вообразить себе, нам, закованным в тиски трехмерных оков и ограниченных вялотекущими секундами нашего краткого времени. И на фоне этих чудесных видов наш ежедневный путь из сортира в умывальную становится нам гораздо менее интересен, нежели пути звезд и планет, пути развития Вселенной, пути рождения и гибели Мира.

       Эта книга не всегда все раскладывает по полочкам, до чего-то вам придется доходить уже своим умом. Но она делает - я надеюсь - самое главное: разбивает наше окостенелое представление о застывшем, заморозившемся мире наших бытовых представлений. Для того, чтобы понять ее, вполне достаточно знаний по физике на уровне обычной школы, а то и того меньше. Но она требует способности вообразить себе не очень вообразимое и отказаться от тех привычных траекторий нашей мысли, которые были вбиты в нас с детства. Наверное, этим и отличаются великие физики от людей ординарных - умением отказаться от общепринятых, "смерзшихся" понятий и способностью взглянуть на вопрос "сверху".

       Итак - приятного вам чтения и новых впечатлений.

       M.

       ВНИМАНИЕ! В силу ограниченности шрифтов экрана и обычного принтера нам придется ввести ряд условных обозначений. Схема и иллюстрации будут воспроизведены по возможности.

       ~ - знак "около", "порядка".

       ~~ - две тильды одна под другой - "примерно равно".

       ~- - тильда над дефисом - "эквивалентно", надо полагать. Скорее должно бы быть тильда над равно.

       +- - "плюс-минус", т.е. минус под плюсом. Это может быть и в надиндексе, как в W+- - бозоне.

       ** - знак возведения в степень. Иногда он делается в виде надиндекса.

       =< - меньше или равно

       >= - больше или равно

       ~< - порядка или больше

       >~ - порядка или меньше

       /= - не равно

       == - значок тождества, т.е. три черточки друг под другом.

       -> - значок "сумма" -

        -----------------, \/ . . . . . - значок корня

       ---\ \ \ - значок интеграла. \

       \ \--

       -> - стрелочка "переходит" или "стремится". Это же над именем отрезка или латинской буквой - значок вектора.

       ^ - значок "дельта" (треугольничком)

       ю - (в индексах) - греческая НЮ.

       v - (в индексах) греческая ??? (V согнутая вверху налево).

       A - (в индексах) - греческая "альфа".

       ALPHA - греческая буква "альфа"

       BETA - греческая буква "бета"

       DL - дельта маленькое (этакое d в производных, но только с загнутым хвостиком). В частных производных.

       EPS - греческая буква "эпсилон" (?).

       FI - греческая буква "фи"

       GAMMA - греческая буква "гамма"

       HP - постоянная планка - h с перечеркнутой палкой. Кажется, что-то типа 1/247

       LAM - греческая "лямбда" (или как там ее зовут, длина волны).

       NU - греческая буква "ню".

       OME- греческая "омега" большая.

       PI - греческие "пи", длина окружности

       PSI - такая греческая буква, кажется, читается "пси".

       PSIG - "пси" большое

       RO - буква "ро", обозначает обычно плотность чего-нибудь.

       SIGM - греческая "сигма".

       TAU - греческая буква "тау".

       TETA - греческая буква "тета"

       БЕСК - значок бесконечности (лежачая восьмерка)

       <<...>> - выделенный текст (курсивом).

       Надиндексы пишутся в верхней строке, подиндексы - в нижней, в текущей же строке на этом месте ставится знак |. Будьте аккуратны при разбиении на страницы.

       Звездочка в знаке умножения означает точку; x означает умножение крестиком (векторное и т.п.).

       В сносках номер сноски заменен на ` . При этом сноска следует сразу за текущим абзацем и выделена горизонтальными линиями.

       ПРЕДИСЛОВИЕ АВТОРА

       Микеланджело принадлежит высказывание, что искусство скульптора состоит в умении отсекать лишнее. Известны аналогичные высказывания классиков литературы о писательском мастерстве.

       Вряд ли многословие угрожает авторам книг по физике и математике. Некоторые из этих книг состоят почти полностью из формул. Но существует другая опасность - многомыслие, возникающие из-за желания автора охватить максимальное число фактов и теорий, относящихся к рассматриваемой проблеме.

       Именно этой опасности, усугубляемой широтой избранной темы, хотел избежать автор настоящей книги, поэтому он старался по возможности ограничить круг привлекаемого для рассмотрения материала.

       Однако, это не всегда удавалось в полной мере. Дело тут вот в чем. Тема этой книги - новые представления о структуре физического пространства и происхождении Метагалактики, пересмотр старых. Необходимость же подобного пересмотра в отличие от специальной или общей теории относительности, базирующихся на небольшом количестве бесспорно установленных фактов (опыт Майкельсона, отклонение света в гравитационном поле Солнца и смещение перигелия Меркурия), основывается на многих относящихся к различным областям физики экспериментальных фактах.

       И еще одну опасность предстояло избежать автору пройти между Сциллой и Харибдой научно-популярной книги найти в излагаемом материале верное сочетание, необходимую пропорцию между устоявшимся, уже вошедшим в обиход и новым, только появившимся, остромодным.

       Непрофессионалу, возможно, трудно представить себе, насколько физики (как, вероятно, и представители других наук) подвержены моде.

       Так, 1980 - 1982 гг. прошли под лозунгом: "Даешь распад протона". Строились огромные установки, вкладывались большие средства, а эта "проклятая" частица все еще не хочет распадаться. Автор далек здесь от иронии: обнаружение распада протона стало бы эпохой в физике, но увы...

       В 1983 г. были модны многомерные теории Калуца-Клейна.

       В 1984 - 1985 гг. стали популярны "супертеории", основанные на таких понятиях, как "супергравитация", "суперсимметрия", "суперпространство", "суперструны" и т.д.

       Как подтверждение суперсимметрии оптимисты трактуют буквально с неба снизошедшее излучение двойной звезды Syg-X3. Пессимисты же более осторожны в своих выводах.

       При создании книги мы воспользовались рекомендацией А.К.Толстого: "О том, что очень близко, мы лучше умолчим". Чтобы оценить все эти "супертеории", нужна некоторая временн`ая перспектива, да и сделать их изложение простым достаточно сложно. Поэтому автор сосредоточил свое внимание на многомерных теориях, благо прошло уже достаточно времени (несколько лет) с тех пор, как они оказались в центре внимания. Впрочем, чтобы не прослыть суперретроградом, автор не мог порой удержаться от использования терминов с приставкой "супер".

       Трактовать современные представления о пространстве, не упоминая классические их образы - пространства Минковского и Римана, равносильно постройке большого здания на песке. Казалось необходимым кратко напомнить их свойства. Это, возможно, придало книге некоторую архаичность.

       Как видно из предисловия, поводов для замечаний предостаточно. Автор будет благодарен читателям за деловое обсуждение затронутых им вопросов.

       ГЛАВА 1. Г Е О М Е Т Р И Я

       1. ЭМПИРИЧЕСКАЯ ГЕОМЕТРИЯ

       Основы эмпирической геометрии, как науки о непосредственно наблюдаемом пространстве были заложены в глубокой древности: в Египте, Вавилоне и Греции. Итоги многовековых размышлений о количественных соотношениях между видимыми, непосредственно наблюдаемыми объектами были подведены в III в. до н.э. Евклидом. В течение почти 2.5 тысячелетий евклидова геометрия является одним из столпов школьной математики. практически в неизменной форме она дошла до нашего времени. Случай этот уникален. почти забыта физика Аристотеля, о математическом анализе Архимеда вспоминают лишь историки математики. Школьная же геометрия базируется на геометрии Евклида. Разница в основном лишь в методике изложения.

       В чем причины поразительной живучести евклидовой геометрии? На наш взгляд, ответ на этот вопрос многозначен. Во-первых, она хорошо отображает простейшие количественные отношения форм реальных объектов, во-вторых, евклидову геометрию характеризует поражающая логичность и методическая завершенность, наконец, евклидова геометрия является превосходной основой для воспитания логического мышления на общедоступных примерах, имеющих широкие практические приложения.

       Поучительно подробнее разобрать приведенные аргументы.

       Геометрия (как указывает ее название) родилась из практических задач - измерения площадей земельных участков. Например, простейший вопрос об отношении площадей круга и квадрата нельзя решить без помощи геометрии (в рамках элементарной математики). Именно задачи о сравнении площадей земельных участков очень часто приходилось решать древним геометрам.

       Отметим, что актуальность решения подобных задач сохраняется и поныне. Можно с уверенностью сказать, что читатель сталкивается с вопросом о длинах, площадях и объемах различных предметов. Основные понятия геометрии Евклида прочно вошли в нашу жизнь. Образы точки (например, в письме), плоскости (стены комнат) и объемов )дома, в которых мы живем) - наша повседневная действительность.

       Евклид (точнее, его геометрия) в достаточно общем виде решил одну из важнейших практических проблем: количественного сравнения реальных объектов с разными формами. Созданная им геометрия была облечена в столь безукоризненную изящную форму, что актуальная для современности проблема "практического внедрения" была решена без задержек.

       Несомненно, что "живучести" геометрии Евклида и ее быстрому "внедрению" способствовала ее адекватность кинематике абсолютно твердых тел. Неизменность их формы при перемещениях оптимально описывается в рамках евклидовой геометрии.

       Подчеркнем далее, что вместе с геометрией Евклида в математику пришла абстракция. Для геометрии (по крайней мере в ее привычной формулировке) безразлично, сравниваются ли, например, объемы однородных предметов (двух комнат) или различных (например, гаража и автомашины). Геометрия как часть математики отвлекается от сущности объекта исследования. И в этой особенности имеются как сильные, так и слабые стороны.

       Сила традиционной геометрии - в ее общности, универсальности. Слабость - в абстрагировании, создающем предпосылки для размытия основополагающих понятий геометрии, размытия, затрудняющего их сопоставление с реальными объектами, явлениями или процессами. До определенного времени этому обстоятельству не придавали серьезного значения, однако, когда наступила пора подвергнуть геометрию критическому переосмысливанию, высветилась эта слабая сторона геометрии. Возникла парадоксальная ситуация: самая точная и, по-видимому, самая наглядная наука - геометрия базируется на понятиях, не поддающихся точным определениям. Чтобы оправдать такое сильное утверждение, полезно напомнить некоторые "школьные" истины.

       Учитель, начиная обучение геометрии, произносит слова: "Точка - объект, лишенный протяженности, линия - объект, характеризуемый длиной, но лишенный ширины" - и затем иллюстрирует эти определения, отмечая мелом на доске точку и проводя линию. Однако, размеры такой точки ~ 1 мм, ширина линии также ~ 1 мм - символ точечности? Это утверждение в значительной степени базируется на авторитете учителя.

       Если постараться, можно, используя тонкое перо, свести размеры "точки" или "ширины" линии до ~0.1 мм, но и эта величина не соответствует геометрическому определению точки или линии.

       Опираясь на весьма тонкие оптические методы, можно уменьшить размеры точки до 10**-10 см. Данные о рассеянии некоторых элементарных частиц свидетельствуют, что их размеры ~<10**-16 см. Однако и в этом случае не исчезает "проклятый" вопрос: можно ли объекты, характеризуемые столь малыми величинами, полагать "точками"?

       Те же трудности возникают при попытках эмпирически воспроизвести другое основное понятие геометрии - прямую линию. Обычно полагают, что эталоном прямой является луч света, распространяющийся в пустом пространстве. Однако в соответствии с основными принципами оптики и квантовой механики ширина пучка света по порядку величины равна длине волны LAM, а это значение невозможно свести к нулю.

       Но главная проблема, пожалуй, не в конечности величины LAM. Положение о прямолинейности распространения света в пустоте (даже в пренебрежении значением LAM) само является лишь постулатом, требующим независимого доказательства. В нашем распоряжении нет априорно идеальной линейки, которая позволила бы проверить прямолинейность распространения светового луча. Следовательно, это утверждение имеет лишь полуинтуитивное обоснование, основанное на том эмпирическом факте, что в нашем распоряжении нет других методов, позволивших прочертить абсолютно прямую линию между двумя точками. Однако даже это свойство света не гарантирует его прямолинейность. Допустим, что пространство имеет форму сферы. Кратчайшее расстояние на сфере - отрезок большого круга, отнюдь не тождественный прямой. Поэтому утверждение: световой луч прочерчивает прямую эквивалентно тезису: наше пространство плоское, евклидово. А этот тезис сам нуждается в эмпирическом образовании.

       К этому вопросу мы далее будем неоднократно возвращаться.

       2. ГЕОМЕТРИЯ

       КАК ФИЗИКО-МАТЕМАТИЧЕСКАЯ

       ДИСЦИПЛИНА

       До конца 20-х годов прошлого столетия евклидова геометрия казалась незыблемой и единственной теорией пространства.

       В 1829 г. Н.И.Лобачевский опубликовал статью "О началах геометрии". В этой статье, так же как и в письмо молодого венгерского математика Я.Больяи, переданном К.Гауссу, утверждалось, что возможно построение непротиворечивой геометрии, не содержащей известный пятый постулат евклидовой геометрии. Этот постулат, гласящий, что через точку, лежащую вне данной прямой, можно провести одну и только одну прямую, параллельную данной, казался наиболее уязвимым (или наименее очевидным) априорным требованием евклидовой геометрии. Однако попытки вывести его из других аксиом оканчивались всегда неудачей. Поэтому был выбран другой путь - построение геометрии, основанной на всех аксиомах и постулатах Евклида, но в которой был заменен пятый постулат о параллельных: через одну точку можно провести либо бесконечное множество прямых, параллельных данной, либо ни одной.

       Кажется не лишенным интереса следующий вопрос: почему в течение тысячелетий геометрия Евклида сохранялась в первозданной форме, а затем почти одновременно три человека подвергли ревизии одно из основных ее положений? Разумеется, на этот вопрос нет однозначного ответа. Однако разумно допустить, что подобное совпадение не случайно. В ревизии геометрии свою роль сыграл психологический климат, характерный для общественной жизни того времени, явившийся следствием происшедших революционных потрясений и обусловивший стремление к критическому пересмотру канонизированных учений. Даже библейские догматы, освященные тысячелетней верой и поддерживавшиеся авторитарностью церкви, подверглись критическому анализу (Б.Спиноза).

       Лишь геометрия Евклида оставалась каноническим учением, но, наконец, наступила и ее очередь.

       Необходимо подчеркнуть важное обстоятельство. Отрицание пятого постулата отнюдь не означает отрицания всей Евклидовой геометрии. Все аксиомы его геометрии и сам дух этой науки сохранились. Но отрицание даже одного утверждения Евклида имело далеко идущие последствия: возникла мысль, что геометрия Евклида не единственное и не последнее слово в геометрии. А такая мысль могла быть расценена в то время не иначе, как ересь. (Известно, что Гаусс не опубликовал своих исследований по основам геометрии, опасаясь непонимания со стороны своих коллег.)

       Исключительно важным следствием скепсиса в отношении пятого постулата является постановка вопроса о необходимости его экспериментальной проверки. Непосредственная его проверка весьма затруднительна. Представляется даже уместным употребить слово "невозможна". Дело в том, что если (как отмечалось ранее) нет экспериментального критерия (прямизны) линии, то еще более сложно реализовать эмпирически несколько прямых и убедиться, в отсутствии их пересечения на больших расстояниях. Однако пятый постулат о параллельных эквивалентен (в сочетании с другими аксиомами евклидовой геометрии) утверждению, которое в принципе подвергается непосредственной проверке. согласно этому утверждению сумма углов треугольника равна PI. Измерение углов - операция весьма разработанная, и поэтому проверку этого положения можно проделать с относительно хорошей точностью.

       Уже в первых работах по неевклидовой геометрии было продемонстрировано, что отклонение суммы углов треугольника от PI (при отрицании постулата о параллельных) пропорционально площади треугольника. Поэтому казалось, что если провести измерения углов достаточно большого треугольника, то нетрудно проверить истинность (или ложность) пятого постулата. К сожалению, такой оптимистический вывод необоснован.

       Истоки трудностей предложенного метода проверки коренятся в принципиальной неопределенности термина "большое само по себе". В точных науках имеет смысл лишь утверждение: "большое относительно чего-то". В упомянутом же выше утверждении отсутствует именно эталон, который вдохнул бы полноценное содержание в утверждение о сумме углов треугольника.

       Лобачевский и Гаусс (независимо) в своих попытках проверить евклидову геометрию, по-видимому, исходили из убеждения, продиктованного античной философией: "человек мера всех вещей". Поэтому казалось, что достаточно выбрать треугольник со сторонами, существенно превышающими размеры человека. Например, Гаусс измерил сумму углов треугольника со сторонами, во много раз (10**5) превышающими размеры человека. В результате измерений оказалось, что в пределах экспериментальных ошибок сумма углов треугольника равна PI.

       Следует четко понимать, что в экспериментальном подходе в проверку пятого постулата "нет" и "да" весьма неэквивалентны. Метод, основанный на измерении суммы углов треугольника, может продемонстрировать отклонение от евклидовой геометрии, но не может доказать ее абсолютную справедливость. Действительно. какой бы треугольник в пределах наблюдаемой части Вселенной мы ни использовали в качестве образца, всегда можно утверждать, что его площадь мала, а точность наших приборов недостаточна для обнаружения отклонений от евклидовой геометрии. Все же известная польза от опытов Гаусса - Лобачевского (или аналогичных экспериментов) существует: если и есть отклонения от евклидовой геометрии, то они малы. Это вывод верен по крайней мере для масштабов, существенно превышающих привычные земные расстояния.

       Итак, с одной стороны, евклидовость пространства допускает опытную проверку. В другом аспекте - евклидова геометрия как логическая система аксиом и теорем является лишь одной из возможностей. В дальнейшем мы продемонстрируем, что таких возможностей много, существенно больше, чем полагали основоположники неевклидовой геометрии. Тем не менее геометрия нашего пространства евклидова или почти евклидова. Почему природа выбрала этот вариант геометрии? На этот вопрос мы попытаемся ответить в гл.3.

       Здесь же мы ограничимся замечанием, что среди всех логически замкнутых геометрий система Евклида является наиболее простой. Представляется, что, помимо простоты, эта геометрия также и наиболее естественна. Впрочем, подобное суждение лишь отражает субъективное мнение автора.

       Для иллюстрации идеи неевклидовости пространства полезно привести достаточно простой пример. Пусть пространством является поверхность обычной двумерной сферы. Отвлечемся прежде всего от привычного образа сферы, вложенной в видимое трехмерное пространство, полагая сферу самостоятельным автономным объектом. Будем полагать, что "прямые" в таком сферическом пространстве - кратчайшие расстояния между двумя заданными точками на сфере, т.е. дуги большого круга. Положим, что бесконечным прямым в евклидовом пространстве соответствуют окружности на сфере. Здесь правильно будет говорить именно о соответствии, а не о тождестве, поскольку окружность на сфере обладает лишь одним свойством евклидовой прямой - отсутствием границ, но не обладает другим ее свойством - бесконечной протяженностью. Окружность на сфере безгранична, но конечна. Нетрудно, далее, убедиться, что через любую точку сферы, не находящуюся на данном большом круге, нельзя провести большой круг, не пересекающий данный, т.е. "параллельную". Иначе говоря, все "прямые" пересекаются.

       Отметим также и другую важную особенность сферической геометрии. Если вырезать из сферы достаточно малую площадку, то геометрия будет имитироваться геометрией Евклида. Здесь полезно подчеркнуть, что подобный прием - вычленение из более сложной геометрии простейшей (в данном случае геометрии Евклида) с помощью выделения малой части полного пространства (здесь - сферы) - прием весьма распространенный и мы далее столкнемся с ним не раз.

       После открытия одного варианта неевклидовой геометрии в последующем своем развитии геометрия как ветвь математики прошла весьма значительный путь. Были развиты многие другие неевклидовы геометрии (некоторые из них рассматриваются далее в разд. 6 и 7 этой главы). В подобной эволюции существенную роль сыграло внедрение в геометрию аналитических методов. По существу, геометрия слилась с алгеброй (точнее, с математическим анализом), оставив в своем арсенале лишь одну (хотя и важную) привилегию определенную форму мышления, в которой большую роль играют образность и наглядность.

       3. ИДЕАЛИЗАЦИЯ И ПРИБЛИЖЕНИЕ

       Ранее мы упоминали о некоторой неопределенности в основных понятиях геометрии: точка, линия и т.д. Превосходной иллюстрацией такой неопределенности является геометрический принцип двойственности. Суть этого принципа заключается в том, что если поменять местами наглядные образы точки и прямой, то в аксиомах и теоремах геометрии почти ничего не изменится.

       Покажем некоторые простейшие примеры проявления принципа двойственности, для чего вначале приведем стандартные положения геометрии, а затем попросим читателя сделать усилие и в соответствующих фигурах совершить взаимную замену точек и прямых.

       1. <<Через одну точку можно провести бесконечное число прямых. Любая прямая содержит бесконечное число точек.>> Второе положение эквивалентно первому в следующем смысле: нужно слово "провести" заменить на "содержит". Такая замена имеет лишь семантический характер.

       2. <<Через точку пересечения двух прямых a и b можно провести бесконечное число прямых, расположенных между прямыми a и b.>> Ясно, что и это положение сохраняет свою силу при взаимной замене точек и прямых.

       3. <<Треугольник -- это фигура, образованная тремя прямыми, проходящими через три точки, не лежащие на одной прямой.>> Легко проверить, что при взаимной замене точек и прямых получается привычный треугольник.

       Число иллюстраций принципа двойственности можно существенно увеличить, он пронизывает всю геометрию. Отсюда можно сделать вывод: интуитивные понятия "точки" и "прямой" в значительной степени условны.`

       -----------------------------------------------------------` Важно отметить, что в последнее время в физике микромира развиваются представления о том, что основным элементом геометрии - точкой - являются линейные элементы. Подробнее об этом см. разд. 10, гл. 2. -----------------------------------------------------------

       Из этого вывода следует естественный вопрос: как самая точная наука - математика (точнее, одна из ее областей геометрия) может базироваться на системе не вполне определенных понятий? Более того, при взаимной замене ее основных определений большинство выводов сохраняют свою силу.

       Ответ на поставленный вопрос несложен, пока он относится к чистой математике (а речь идет именно об этом направлении).

       Высшим критерием математической истины является логическая замкнутость, непротиворечивость системы аксиом и следующих из нее теорем. Чеканная логика - основной критерий истины в математике.

       Соответствие данной математической конструкции эмпирическим наблюдениям или простым интуитивным представлениям является критерием менее важным, чем логическая завершенность.

       Крупнейший математик Д.Гильберт посвятил значительную. часть своей жизни совершенствованию аксиоматики геометрии. Ему принадлежит известное основополагающее определение: "Мы мыслим три различные системы вещей: вещи первой системы мы называем точками о обозначаем A, B, C...; вещи второй системы мы называем прямыми и обозначаем a, b, c..."`. Для нас исключительно важно, что в этом фундаментальном определении (так же как и во всей цитируемой книге Гильберта) автор и не пытается представить наглядный образ точки или линии. Он постулирует и уточняет лишь отношение между этими объектами. Из этих отношений и следует определенная геометрическая конструкция.

       -----------------------------------------------------------` Гильберт Д. Основания геометрии. м.; Л.: Гостехиздат, 1948. С.57. -----------------------------------------------------------

       Приведенная цитата лаконично подытоживает (в определенном смысле) исследования центральных понятий геометрии. Основные ее понятия - идеализированные объекты, не обязательно связанные с конкретной реальностью или интуитивными представлениями. "Точкой" может быть идеализированный объект, лишенный протяженности во всех измерениях или в части измерений (линия или плоскость). Нулевые размеры точки не мешают ей обладать внутренней структурой и т.д.

       Важны лишь отношения между геометрическими объектами, которые должны быть определены очень точно и непротиворечиво. Этот критерий и ограничивает произвол в выборе основных объектов. Подобную ситуацию можно назвать сверхабстракцией или сверхидеализацией. Количественная мера подобной идеализации не обязательна.

       Здесь нужно особо подчеркнуть различие в отношении к термину "идеализация" со стороны математиков и физиков.

       Идеализация - прием, типичный для математики. Иногда он даже не оговаривается. Однако идеализация - редкий гость в физических концепциях. И хотя этот термин иногда встречается в физических работах, он должен обязательно сопровождаться количественным критерием этой идеализации. Должен! Однако зачастую этот критерий не приводится. И тогда читатель подвергается искушению отнести подобную работу всего лишь к интересным математическим упражнениям. Иногда подобные работы сопровождаются солидными математическими узорами, однако подобное рукоделие не всегда поддается физической расшифровке.

       Кардинальное расхождение в оценке термина "идеализация" со стороны физиков и математиков вполне закономерно. Оно обусловлено разницей в высших критериях "истины" этих дисциплин. Для математики важнейший критерий - логическая завершенность, для физики же - опыт. Обычно лишь экспериментальные исследования могут подтвердить или опровергнуть правильность физических построений. Разумеется, такая категоричность вывода не исключает более простую возможность: данная теория неверна вследствие противоречия с общепризнанными физическими принципами, логических неувязок, математических ошибок и т.д. Однако для новой, пусть самой красивой и формально безупречной теории высший критерий опыт. Поэтому физики предпочитают употреблять термин "приближение".

       Полезно привести пример экспериментального выбора между двумя одинаково красивыми и логически безупречными теориями, объединяющими электромагнитное и слабое взаимодействия.`

       -----------------------------------------------------------` О некоторых свойствах элементарных частиц и их взаимодействиях см. Дополнение. -----------------------------------------------------------

       На рубеже 60 - 70-х годов были предложены две альтернативные теории электрослабого взаимодействия. В рамках одного варианта теории оно осуществлялось посредством двух

       +заряженных тяжелых частиц (W|| -бозонов). В соответствии с другой теорией, помимо заряженных частиц - переносчиков взаимодействия, должен был существовать также и тяжелый

       0 +нейтральный Z| -бозон примерно с той же массой, что W|| -бозоны. Опыт: существование нейтральных токов (конкретно обнаружение рассеяния нейтрино на электронах) и, наконец, открытие на ускорителе нового поколения всех трех типов

       +- 0 частиц (W||- и Z| -бозонов) подтвердили правильность второго варианта теории электрослабого взаимодействия, который называется теорией Глешоу - Вайнберга - Салама. До названных экспериментов логический анализ не мог произвести выбор между двумя вариантами теории электрослабого взаимодействия.

       Различие же высших критериев в обеих точных науках влечет за собой и расхождение в требованиях точности определения основных объектов, с которыми они оперируют.

       Для краткости аргументами в пользу этого тезиса целесообразно опереться на авторитеты.

       Л.Д.Ландау и Е.М.Лифшиц начинают свой курс теоретической физики с определения материальной точки. Под этим названием понимают тело, размерами которого можно пренебречь при описании его движения".`

       -----------------------------------------------------------` Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М.: Наука, 1973. Т.1. Механика, с.9. -----------------------------------------------------------

       В этом определении центральное место занимает физический критерий реализации "точечности" объекта.

       Вероятно, в физике следовало бы все-таки во избежание путаницы устранить термин "идеализация", заменив его на "приближение".

       Р.Фейнман (на наш взгляд, абсолютно правильно) утверждал: "Чтобы понять физические законы, вы должны усвоить себе раз и навсегда, что все они - в какой-то степени приближения".`

       -----------------------------------------------------------` Фейнман Р. и др. Фейнмановские лекции по физике. М.: Мир, 1965. Т.1. Современная наука о природе. Законы механики. с.211. -----------------------------------------------------------

       В физических книгах и работах обычно определяют некий малый параметр, которым при четко определенных условиях можно пренебречь. Как правило, приближение выражается в форме неравенства, когда безразмерная величина, определяющая приближение, становится малой сравнительно с единицей.

       Приведем прекрасный пример приближенности теории. Классическая механика Ньютона верна, если выполняются два условия: v/c << 1 и HP/S << 1 (c - скорость света, v скорость тела, HP - постоянная Планка, S - действие).

       Если же v/c ~ 1, то следует учитывать релятивистские поправки, обусловленные теорией относительности. Если HP/S ~ 1, то вступают в силу законы квантовой механики. Напомним, например, что в соответствии с теорией относительности масса M изолированной системы зависит от ее скорости: M = M| [1-(v/c)**2]**(1/2), где M| - так

       0 0 называемая масса покоя. При v/c << 1, M ~~ M| ~- const(v) в соответствии с ньютоновской механикой.

       0

       Итак, основа математики - идеализация, в физике царствует приближение. Несомненно, что сейчас такое деление несколько условно. Дело заключалось в том, что само понятие геометрии, предмета геометрии, несколько размылось. Вероятно, этому расширенному толкованию геометрии следовало бы посвятить специальную книгу и, быть может, не одну. Здесь мы ограничимся кратким изложением авторской точки зрения на предмет.Известный субъективизм в обсуждении основ геометрии, по-видимому, знамение времени, обусловленное быстро возрастающей ролью геометрии в физике. Происходит взаимообогащение и взаимопроникновение обеих наук, что и вызывает определенное смещение основных физико-математических понятий. Это смещение не успевает отслеживаться терминологией. В старые термины вкладывается новое содержание. Отражением подобной неустойчивости или неадекватности основных терминов и их содержания является различие их определения даже в современных школьных учебниках, написанных разными авторами.

       По нашему мнению, сейчас сосуществуют три несколько отличающиеся друг от друга геометрии.

       Первая - математическая геометрия, предмет которой исследование свойств пространств безотносительно к физической реальности.

       Вторую можно условно назвать физико-математической геометрией. В ее рамках геометрические методы используются для устранения незамкнутости, непоследовательности уравнений, описывающих квантовую теорию поля. Физико-математическая геометрия непосредственно не соприкасается с физической реальностью, однако имеет существенное значение для построения единой последовательной картины мира.

       И наконец, последняя -- физическая геометрия, которая является фоном для эволюции материи и ее непосредственного описания.

       Автор отлично понимает схематичность подобной классификации, однако едва ли уместно давать в данной книге более развернутую картину многих граней современной геометрии.

       В заключение следует подчеркнуть, что автор - физик и, по возможности, придерживается круга понятий и терминов физической геометрии.

       4. СУЩЕСТВУЕТ ЛИ ЕДИНСТВЕННАЯ

       ФИЗИЧЕСКАЯ ГЕОМЕТРИЯ?

       На заре нашего столетия А.Пуанкаре высказал мысль, которая сделалась впоследствии почти нарицательной: опыт не определяет порознь физику и геометрию. Он подтверждает суммарно физику и геометрию в их взаимосвязи. Но если наблюдения измеряют лишь сумму, то это означает, что каждое из слагаемых имеет определенный произвол.

       Наиболее ревностные последователи Пуанкаре пошли еще дальше, полагая, что для описания физической реальности можно выбрать любую геометрию, а к ней уже "подогнать" соответствующую физику так, чтобы эмпирическая "сумма" геометрия+физика оставалась неизменной. Другими словами: выбор физической геометрии произволен и определяется вкусом и удобством вычислений. Абсолютная физическая геометрия отсутствует.

       Правилен ли этот тезис? По нашему мнению, полный ответ имеет сложную диалектическую форму. Однако нельзя согласиться с полной релятивизацией физической геометрии. Существует, по-видимому, единственная геометрия (или, точнее, ограниченный класс геометрий), отвечающая полному набору наблюдений. Эта геометрия имеет сложный характер, и ее анализу посвящены две следующие главы книги. Здесь же следует подчеркнуть, что речь идет о полном наборе экспериментальных фактов и основополагающих физических принципах, а не о единичных опытных данных, интерпретировать которые без труда можно на основе произвольной геометрии.

       Выступая против релятивизации геометрии для описания физики, автор отдает себе отчет об ответственности оппонента такому титану, как А.Пуанкаре. Но во-первых, подобная оппозиция направлена прежде всего против чересчур ревностных апологетов идеи релятивизации, а во-вторых, автор имеет мощного союзника - время. С тех пор, как Пуанкаре высказывал свои идеи, прошло около 80 лет, и физика изменила свой лик.

       Прежде всего, на наш взгляд, существенно углубилось понимание основного объекта - точки, адекватного общим физическим принципам. И главное: колоссально возрос эмпирический материал, сузивший произвол в выборе геометрии. Иначе говоря, нам представляется, что существует естественный (хотя и сложный) класс геометрий, в рамках которого реализуется эмпирическая основа физики - динамики. Чтобы иллюстрировать (весьма предварительно, поскольку этому предмету посвящена вся книга) предопределенность геометрии эмпирическим наблюдениями, мы рассмотрим простейший пример.

       Допустим вначале, что распространение света или радиоволн в межпланетной и межзвездной средах соответствует прямой в смысле евклидовой геометрии. Параметры межпланетной и межзвездной сред известны, и можно показать, что они практически не влияют на направление распространения света или радиоволн достаточно высокой частоты. Тогда различными методами можно весьма точно измерять расстояния до солнца, планет или многих звезд в Галактике. Определяя затем угол между направлениями от Земли до двух космических объектов (например, Солнца и одной из планет), можно вычислить сумму углов треугольника, образованного Землей и этими двумя объектами. И всегда, независимо от природы объектов, сумма углов оказывается в пределах небольших экспериментальных ошибок равной PI.` Таким образом, можно было бы сделать вывод, что по крайней мере в пределах Галактики ее геометрия - евклидова. Этот вывод правилен, но с одной оговоркой, которую может использовать верный последователь Пуанкаре. В этих рассуждениях допускалось, что направление распространения фотонов в пустоте совпадает с прямой линией. На чем основано это утверждение? Может быть, фотоны движутся по кривой, а само пространство также кривое и обе кривизны взаимно компенсируют друг друга, так что в результате получается мнимое доказательство торжества евклидовой геометрии?

       -----------------------------------------------------------` Это утверждение верно с точностью до весьма малых релятивистских поправок, которые можно учесть при вычислении суммы углов. -----------------------------------------------------------

       Ответ на это возражение базируется на анализе совокупности физических фактов. Так, было проделано множество опытов по определению параллаксов различных космических объектов, расположенных на различных расстояниях от Земли. Всегда сумма углов оказывалась равной PI.

       Причем непосредственное изучение геометрии по свойствам космических треугольников далеко не единственный метод определения характеристик пространства.

       В физике подробно изучены различные взаимодействия: электромагнитное (в макро- и микроскопических проявлениях) и микроскопические (слабое и сильное). Электромагнитное взаимодействие исследовалось в огромных интервалах расстояний: 10**-16 - 10**13 см. Самые малые расстояния изучались с привлечением весьма тонких методов физики элементарных частиц. В частности, измерялись рассеяния электронов на электронах и электронов на позитронах. Ценность этих опытов в том, что в них проявляется практически только одно взаимодействие - электромагнитное. В этих и аналогичных опытах с очень большой точностью (иногда вплоть до десятого знака) было продемонстрировано, что законы электродинамики справедливы. Электродинамика на самых больших расстояниях проверялась с меньшей точностью (радиолокация Солнца и планет, электродинамика Солнца). Разумеется, с существенно большей точностью электродинамика проверена в масштабах Земли (~10**9 см).

       Законы микроскопических взаимодействий (слабого и сильного) на малых расстояниях (10**-16 - 10**-13 см) также хорошо (хотя и с меньшей точностью - до второго - пятого знака) подтверждены опытом.

       Когда здесь упоминались законы взаимодействий, то они, разумеется, понимались как совокупность динамических уравнений и геометрии пространства, в котором существуют материальные точки. Во всех упомянутых опытах делалось одно априорное предположение: пространство евклидово. Вероятно, можно для интерпретации отдельных опытов придумать объяснение на основе геометрий, отличных от евклидовой, но допущение, что вся огромная совокупность экспериментов объясняется на базе неевклидовой геометрии, представляется невероятной.

       В заключение отметим, что современные представления о структуре Метагалактики (Вселенной) также свидетельствуют, что в ее пределах (размер ~10**28 см) пространство евклидово или близко к нему (см. разд. 6 и 8 гл. 3).

       Таким образом, весь исключительно богатый набор экспериментальных фактов согласуется с допущением: в интервале расстояний 10**-16 - 10**28 см физическая геометрия близка или тождественна евклидовой геометрии трехмерного пространства. Нам представляется этот факт доказательством единственности геометрии в этом интервале расстояний. Однако с точки зрения чистой логики нельзя отвергнуть и другой тезис: нет доказательств, что нельзя построить всю физику на основе геометрии, существенно отличной от трехмерной евклидовой. Да, действительно строгого логического доказательства такого утверждения нет. Однако пока не сделаны хотя бы попытки построить физики в существенно измененном пространстве, все утверждения о произволе геометрии имеют абстрактный, а не физический характер.

       Оговоримся в заключение, что под существенным изменением геометрии мы понимаем кардинальную вариацию ее параметров, например размерности. В дальнейшем мы не раз будем останавливаться на связи геометрии (в частности, размерности) и динамики. Далее будет продемонстрировано, что один из основных параметров пространства - его размерность предопределяет в значительной степени динамику.

       И еще одно замечание. Раздельный анализ геометрии и динамики возможен лишь для трех взаимодействий: электромагнитного, слабого и сильного. В рамках эйнштейновской теории гравитации динамика и геометрия сливаются в единое целое, и тогда простота сделанных выше заключений утрачивается. К этому усложненному пониманию взаимосвязи геометрии и физики мы вернемся позже.

       5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

       Аналитическая геометрия сводит понятие точки к набору чисел - координат. Координаты - расстояния до некоторой системы линий, называемых осями координат. Простейший способ системы координат - набор взаимно ортогональных осей - система декартовых координат (названная в честь основателя аналитической геометрии Р.Декарта). Полезно перечислить крупнейшие достижения аналитической геометрии. Существенно уточнено понятие точки (набор чисел). Появилась возможность оперировать с пространствами любой целочисленной размерности. В пространстве N измерений точку определяют N чисел. Значение этого достижения аналитической геометрии в полной мере начали осознаваться сравнительно недавно. Лишь основываясь на ее методах (или модификациях этих методов), можно анализировать многомерные пространства, которые казались математической экзотикой, а сейчас приобрели большую актуальность.

       Преимущества аналитических методов при отображении многомерных пространств проявляются в отсутствии необходимости наглядно себе их представлять или моделировать реально в нашем пространстве - особенностях, обусловленных в первую очередь нашей психологической ограниченностью. Человек привычно представляет фигуры с размерностью N=<3, но не способен вообразить объект большей размерности.

       Для аналитической же геометрии размерность N=3 лишь одна из бесконечного набора возможностей (1=<N=

       При операциях в пространстве N измерений следует определить N координатных осей.

       И наконец, еще одно преимущество аналитической геометрии. Она сильно упрощает представления о геометрических образах, заменяя их (зачастую весьма простыми) уравнениями. Например, в декартовых координатах уравнение прямой: y=ax+b (a, b=const); уравнение окружности: (x-a)**2+(y-b)**2=c**2 и т.д. Нетрудно описать, реализовать евклидово пространство в рамках аналитической геометрии.

       Евклидово пространство можно определить как бесконечное, изотропное и однородное пространство. Любые две его точки полностью эквивалентны. Поместим в любой точке пространства три источника световых лучей, распространяющихся во взаимно перпендикулярных направлениях. Эти лучи образуют координатные оси Ox, Oy, Oz. Перенесем источники света вдоль одной из осей, например оси z. Новые оси O'x', O'y' будут параллельны Ox и Oy. Длины осей бесконечны, поэтому перенесение источников из точки O в точку O' не изменит геометрическую ситуацию. Аналогичное рассуждение можно провести и вращая одновременно все источники в точке на один и тот же угол. Неизменность свойств пространства при перемещениях и вращении отражает основные свойства евклидова пространства - однородность и изотропию. При указанных выше операциях сохранят свою форму и основные уравнения кривых.

       Какова цена, которую следует уплатить за все преимущества аналитической геометрии? Используя ее методы, мы утрачиваем наглядность, привычную нам с детства. Аналитическая геометрия невольно порождает ностальгию по безвозвратно ушедшим школьным годам.

       6. ГЕОМЕТРИЯ В ЦЕЛОМ И

       ГЕОМЕТРИЯ В МАЛОМ

       Наши привычные представления о геометрических фигурах основаны на образе, вписанном, вложенном в евклидово пространство. Да и сама евклидова геометрия широко использует образы объемов или поверхностей, вложенных в евклидово пространство. Для общего представления о фигурах подобная картина вполне достаточна. Однако такие образные представления являются в некотором смысле атавизмом, оставшимся в наследие от убеждения в единственности евклидовой геометрии, понимаемой как ветвь математики. Как только сформировались идеи неевклидовой геометрии, возникла необходимость описания поверхностей-пространств любой размерности независимо от фона - пространства, куда вкладываются эти поверхности-пространства. Последние в такой постановке задачи выступают, как носители самостоятельной автономной геометрии, не связанные с осями координат, вписанными в глобальное евклидово пространство-фон.

       Подобный подход был в прошлом столетии предложен К.Гауссом и Б.Риманом и является основой дифференциальной геометрии. Это сравнительно сложная математическая дисциплина, и мы здесь ограничимся качественными иллюстрациями основных ее идей, адресуя желающих познакомиться с ней детальнее к соответствующим учебникам и монографиям.`

       -----------------------------------------------------------` См., например: Рашевский П.К. Курс дифференциальной геометрии. М.: ГИТТЛ, 1956. Кроме того, дифференциальная геометрия на разных уровнях излагается во многих книгах, посвященных теории относительности. -----------------------------------------------------------

       Чтобы понять основные идеи геометрии поверхностей, обратимся вначале к привычным образам евклидовой плоскости двумерного пространства и двумерной сферы, рассматриваемой как автономное пространство. Известно, что основным свойством евклидова пространства является изотропия и однородность - полная эквивалентность его точек. Однако этого фундаментального свойства евклидова пространства недостаточно для его однозначного определения. Утверждение, что однородное и изотропное пространство есть пространство Евклида, не точно, поскольку этому свойству однородности и изотропии удовлетворяет также и сфера: все ее точки также эквивалентны относительно поворотов осей координат и их трансляции. Иначе говоря, глобальные относительно этих операций свойства обоих пространств одинаковы. Чтобы их количественно отличить, нужно ввести локальные характеристика, характеризующие различие плоского и сферического пространств. Иначе говоря, нужно определить величину, характеризующую кривизну сферической поверхности сравнительно с евклидовым пространством.

       В рамках глобальной неевклидовой геометрии (как мы отмечали ранее) отличие геометрии от евклидовой характеризуется отклонением суммы углов треугольника от PI или (что то же самое) отклонением от теоремы Пифагора. Рассмотрим теперь малые участки обеих пространств. Для них квадрат интервала ds**2 между двумя достаточно близкими точками представляется выражениями:

       ds**2=dx**2 + dy**2 (плоскость) (1)

       ds**2=r**2 sin**2 TETA d FI + r**2 d FI**2 (сфера) (2)

       r, TETA, FI - соответственно радиус, полярный и азимутальные углы. Однако в косоугольных координатах квадрат интервала и плоскости имеет вид

       s**2=dx**2 + dy**2 + 2 dx dy cos ALPHA

       Хотя численное значение интервала остается неизменным (квадрат длины вектора - инвариант относительно замены системы координат), тем не менее форма (3) имеет более сложный вид, чем соотношение (1). Однако выражения (1) и (3) для квадрата интервала имеют лишь разные формы. Различие форм отражает разницу в выборе системы координат. Изменяя систему отсчета, можно во всей евклидовой плоскости интервал ds**2 свести к простой форме (1).

       С выражением (2) интервала на сфере дело обстоит совсем по-другому. Форму (2) никаким преобразованием координат нельзя свести к простому соотношению (1) на всей сфере одновременно. Такую процедуру можно проделать лишь локально, выбирая направление на маленьком участке сферы так, чтобы TETA=PI/2. Однако при таком выборе система координат фиксируется применительно у этому участку сферы. Поэтому глобально для всей сферы соотношения (2) и (1) различаются, что и отражает неевклидовость сферы. Локально - в малом сферу можно аппроксимировать частью плоскости; глобально - в целом - невозможно.

       Представление участка сферы плоскостью довольно тривиальная процедура. Любую малую окрестность достаточно гладкой поверхности можно в первом приближении аппроксимировать плоскостью по аналогии с тем, что отрезок ds непрерывной кривой, описываемой дифференцируемой функцией f(x), представляется в окрестности точки x отрезком прямой длины

       ds=\'7b[f'(x)]**2+1\'7d**(1/2) dx. (4)

       Малый участок достаточно гладкой поверхности обладает следующими свойствами:

       1. В малом однозначно определяется прямая - кратчайшее расстояние между двумя точками.

       2. В малом определяется однозначно вектор и скалярное произведение двух векторов.

       3. Скалярное произведение двух векторов однозначно определяет свойства пространства. Инвариантность скалярного произведения относительно вращений и трансляций определяет евклидово пространство, что и отражено в аналоге равенства (3):

       ds**2=dx| dx|=dx|**2 + dx|**2 + 2 dx| dx| cos ALPHA (5)

       1 2 1 2 1 2

       Это рассуждение - геометрический аналог аналитического соотношения (4). Выбор интервала ds**2 в виде квадратичного выражения принципиален. Квадрат - наименьшая степень, при которой интервал сохраняет свою величину (инвариантен) относительно весьма широкого класса преобразований. В принципе можно было бы опираться на выражения интервалов через многочлены более высокой четной степени, однако, как оказалось, подобная усложненная геометрия практически современной физике не нужна.

       Итак, в дифференциальной геометрии фундаментальную роль играет интервал и его инвариантность относительно широкого класса преобразований. Выражение (3) записывается обычно в следующей форме:

       ds**2 = g|| dx| dx| , (6)

       ik i k

       где наличие общих индексов означает суммирование по всем возможным их значениям. Для двумерной поверхности i,k=1,2; для трехмерной - i,k = 1,2,3 и т.д.

       Величины g|| образуют метрический тензор и

       ik представляются квадратной таблицей (матрицей). Вследствие симметрии (g||=g||) метрический тензор в общем случае

       ik ki характеризуется N(N+1)/2 компонентами.

       Для пространства Евклида все компоненты метрического тензора можно привести к простейшему виду во всех точках пространства: g||=0, если i\=k; g||=1, если i=k. Это правило

       ik ik верно лишь для пространства Евклида. Выражение (6) является алгебраическим представлением произвольной достаточно гладкой поверхности. Можно дать и наглядное, более геометрическое отображение ее свойств. Это отображение основано на упомянутом выше положении, доказанном еще Гауссом, о том, что в малом отклонение геометрии от евклидовой пропорционально некой величине, называемой кривизной. Несколько огрубленно можно сказать, что кривизна (количественная мера отклонения поверхности от евклидовой) оптимальная аппроксимация малого участка поверхности набором окружностей разных радиусов. Число этих окружностей растет с ростом размерности поверхности. Однако существуют симметричные поверхности - пространства, для которых кривизна характеризуется меньшим числом компонент. Так, для сферы кривизна R - однокомпонентная величина.

       R~1/r**2, (7)

       где R - радиус сферы.

       На примере сферы становится ясным, что с уменьшением кривизны или увеличением размеров поверхность локально приближается к евклидову пространству. Такое приближение реализуется и в более общем случае, когда все компоненты кривизны уменьшаются.

       Сфера не является единственной поверхностью с постоянной кривизной. Пример другой такой поверхности пространство Лобачевского, образованное вращением гиперболы. Существует, однако, существенная разница между сферой и пространством Лобачевского. Кривизна сферы положительна, кривизна пространства Лобачевского имеет отрицательный знак. Пространство Евклида - единственное, характеризуемое постоянной, но нулевой кривизной.

       И еще одно замечание. Ранее отмечалось, что характеристика неевклидовости двумерных плоскостей отклонение суммы углов треугольника от PI. Говоря о проведении треугольника на произвольной поверхности, мы молчаливо подразумевали возможность единственного проведения прямых на поверхности в смысле Евклида (прямая - кратчайшее расстояние). Однако в общем случае между двумя точками поверхности можно провести несколько кратчайших расстояний. Эта неоднозначность устраняется, если выбирается достаточно малый участок поверхности.

       Отметим (ввиду важности утверждения) снова, что в малом участке можно определить евклидову систему отсчета. В малом для гладких поверхностей имеет смысл понятие вектора и векторного произведения, инвариантного относительно трансляций и поворотов в пределах малого участка. Но в отличие от евклидова пространства, в котором существует глобальная система координат, обладающая подобными свойствами, в общем случае существование евклидовой системы возможно лишь в малом. По существу это утверждение имеет простой наглядный (геометрический) смысл. Гладкую поверхность можно аппроксимировать бесконечным набором примыкающих малых плоскостей, расположенных друг относительно друга под определенными углами. Характеристики взаиморасположения микроплоскостей кривизны или связности понятия, которые целесообразно рассмотреть в следующем разделе.

       Последние рассуждения прямо относились к двумерным поверхностям. Однако в рамках аналитической или дифференциальной геометрии, когда свойства пространств определяются числами (координатами или величинами компонент метрического тензора или кривизны), можно с равным успехом проводить анализ поверхностей любой целочисленной размерности. Методы аналитической и дифференциальной геометрии позволяют представить геометрические фигуры в безликих арифметических терминах, и нет нужды "воображать" сами поверхности.

       Возможность оперировать с поверхностями (пространствами) произвольной размерности исключительно важна для понимания свойств и характеристик физического пространства (об этом речь пойдет в следующих главах).

       В заключение еще одно замечание. Утверждение, что локально поверхность эквивалентна евклидову пространству, означает, что в любой точке интервал можно привести к виду

       N

       -ds**2 = > dx|**2 (8)

       -- i

       i=1

       Такие поверхности называются римановыми и обладают свойством ds**2 > 0 (положительно определенная матрица).

       Теория относительности внесла коррективы в это определение. Эта теория выдвинула идею нового типа пространств - пространств Минковского когда интервал ds**2 может иметь оба знака (ds**2 >= 0 или ds**2 =< 0), метрика таких пространств называется индефинитной, а сами пространства псевдоевклидовыми.

       Метрика псевдоевклидовых пространств размерности N имеет вид:

       N| N|

       1 2

       -- -ds**2 = > dx|**2 - > dx|**2 (9)

       -- i -- k

       i=1 k=1

       причем N|+N|=N. Обобщением псевдоевклидова пространства

       1 2 является псевдориманово пространство, которое локально представляется псевдоевклидовой метрикой.

       7. РАССЛОЕННЫЕ ПРОСТРАНСТВА

       Уже упоминалось ранее, что точка иногда определяется как геометрический объект, не имеющий протяженности. Поэтому напрашивался вывод, что точка в таком понимании не имеет структуры. Однако критический анализ основных понятий геометрии, а также внутренние, имманентные законы развития дифференциальной геометрии стимулировали создание и развитие нового математического образа - расслоенного пространства. Первые работы, в которых формировались основные понятия расслоенных пространств и их связи с другими разделами математики, относятся к 30 - 50-м годам и принадлежат выдающимся математикам: Э.Картану, Х.Уитни, Ш.Эресману, Ш.Черну.

       Вначале казалось, что этой новой ветви математики уготована участь многих ее разделов: служить красивой абстракцией, не связанной с физической реальностью. Основания для подобных прогнозов были. Фундаментальное понятие точки у расслоенных пространств отличалось от интуитивного образа бесструктурной точки. Однако эволюция физики, и в первую очередь квантовой теории поля, физики элементарных частиц и космологии, привела к сближению представлений о точках в физике и расслоенных пространствах. Постепенно начал вырисовываться абрис синтеза фундаментальной физики и геометрии на базе расслоенных пространств. По нашему мнению, можно высказать и более сильное утверждение: существует "истинное" физическое пространство, которое реализуется в терминах расслоенных пространств.

       Если такая несколько претенциозная формулировка выглядит экстремистской, то более ограниченное утверждение: объединенная теория взаимодействий допускает геометрическую интерпретацию на базы расслоенных пространств - кажется бесспорным. Необходимость такого заключения оказалась для физики несколько неожиданной. Даже творцы теории элементарных частиц оказались неподготовленными к вторжению математики расслоенных пространств в физику. В этом аспекте характерен диалог физика Ч.Янга с одним из основоположников геометрии расслоенных пространств Ш.Черном.

       Янг: "Это (расслоенные пространства. - И.Р.) приводит в трепет и изумление, поскольку вы, математики, выдумали эти понятия из ничего".

       Черн: "Нет, нет! Эти понятия вовсе не выдуманы. Они существуют на самом деле".'

       -----------------------------------------------------------' Янг Ч. Эйнштейн и физика второй половины XX века // УФН. 1980. Т.132. С.174. О расслоенных пространствах см. также ст.: Даниэль С., Виалле М. Геометрический подход к калибровочным теориям типа Янга - Миллса // УФН, 1982. Т.136. С.377-420; Бернстейн Г., Филлипс Э. Расслоения и квантовая теория // УФН. 1982. Т.136. С.665-692. -----------------------------------------------------------

       Этот диалог весьма примечателен. Математики часто строят конструкции, кажущиеся физикам абстрактными, не связанными с физическими ценностями. Разные подходы математиков и физиков приводят к недооценке адекватности некоторых "абстрактных" математических методов физическим проблемам. В результате эти методы заново переоткрываются физиками. Пожалуй, классический пример подобной ситуации переоткрытие В.Гейзенбергом в 1925г. матричного исчисления, которое он использовал для создания квантовой механики. Лишь после бесед с М.Борном он узнал, что теория матриц - хорошо разработанный раздел математики практически не используемый физиками.

       После этих предварительных замечаний целесообразно перейти к изложению основных идей геометрии расслоенных пространств. Начнем с представления основных образов (картин) расслоенных пространств.

       Первый связан с обобщением понятия точки. Точка в расслоенном пространстве эквивалентна автономному пространству. Иначе говоря, можно наглядно представить, что точка в расслоенном пространстве эквивалентна точке в смысле Евклида (объект, лишенный протяжения), к которой "прикреплено" (или лучше: которой соответствует) свое пространство. Можно представить расслоенное пространство в целом. Оно представляет совокупность большого числа (как правило, бесконечного множества) пространств, из которых одно, называемое базой, играет особую роль. Каждая точка этого пространства взаимно однозначно связана со своим пространством, называемым слоем над базой. Каждой точке в базе соответствует свое пространство (слой), отражающий структуру точки.

       Приведем некоторые простейшие примеры расслоенных пространств. Пусть база - прямая, т.е. евклидово одномерное

       1 пространство' R|. Каждой точке базы - прямой - соответствует

       1 окружность S|, расположенная в плоскости, перпендикулярной базе, центром которой является данная точка базы. Радиусы всех окружностей одинаковы. Расслоенное пространство определено однозначно. В данном случае размерности слоев и базы одинаковы и равны 1. Полное расслоение пространства представляет цилиндр и его ось.

       -----------------------------------------------------------' Символом R часто обозначают риманово пространство, частным случаем которого является пространство Евклида. Индекс вверху обозначает размерность пространства . Символ S

       1 соответствует сферическим пространствам: S| - окружность,

       2 S| - двумерная сфера и т.д. -----------------------------------------------------------

       Можно привести пример расслоенного пространства, в котором размерности базы и слоев различны. Пусть база

       3 трехмерное евклидово пространство R|, а слои - двумерные

       2 сферы S|.

       Подчеркнем принципиальную разницу между обоими примерами. В первом случае и слой и база - одномерные фигуры. Полное расслоенное пространство - фигура трехмерная (цилиндр+прямая), и ее нетрудно вообразить воочию.

       Второй пример расслоенного пространства не поддается такой наглядной интерпретации. Каждый его элемент - сфера с точкой базы в центре. Однако совокупное расслоенное пространство имеет пять измерений. Представление о нем как о множестве сфер, расположенных в трехмерном пространстве, неправильно. Слои-сферы находятся в дополнительных измерениях, и поэтому расслоенное пространство в целом нельзя изобразить адекватно на бумажном листе. Представление пространства доступно лишь с помощью аналитических методов.

       ===РИС.1

       ===РИС.2

       В простейшем случае точки базы и слоев - действительные числа. Можно представить, что пространство слоев состоит из точек - мнимых чисел. Например, можно представить себе слой в виде сферы, каждая точка которого - мнимое число.

       Приведем еще один пример. База - круг радиуса r (рис.1). Над базой находится цилиндрический объем, ось которого проходит через центр базового круга перпендикулярно плоскости, в которой он расположен. В данном случае слоями являются прямые, расположенные внутри цилиндра, перпендикулярные основанию. Например, слою aa| соответствует

       1 точка; слою bb| - точка B.

       1

       Во всех приведенных примерах все слои одинаковы. От замены одного слоя на другой геометрия расслоенного пространства не изменится. Такой простейший случай называется простым произведением пространства базы на пространство слоя. Например, первое из приведенных выше

       1 1 2 2 пространств обозначается R| x S|; второе - R| x S| и т.д.

       Возникает вопрос: как математически определить те простейшие расслоения, о которых шла речь выше. До сих пор мы рассматривали примитивные расслоенные пространства простые произведения. Существуют и менее тривиальные произведения.

       Как уже упоминалось, наглядно можно представить лишь расслоенные пространства малой размерности (полная размерность N=<3).

       1 1

       Вначале рассмотрим простейшее расслоение R| x S|.

       1 Допустим, что слой - окружность S| - находится в плоскости,

       1 перпендикулярной базе - прямой R|. Радиус всех слоев положим для простоты равным 1, что не уменьшит общности рассмотрения, поскольку единицы измерения - в ведомстве физики, а не математики. Положение радиус-вектора из любой

       1 1 точки прямой R| в соответствующую точку окружности S| будем характеризовать углом ALPHA, отсчитываемым от некоторой

       1 прямой, перпендикулярной базе R|. В простейшем случае интервал определяется соотношением ds**2 = dx**2 + d ALPHA**2. В более общем случае n-мерного

       n 1 евклидова пространства со слоем S| (R| x S|) метрику можно

       1 записать в виде матрицы:

       ! SIGM|| 0 !

       ! ik ! g|| = ! ! (10)

       юv ! !

       ! 0 1 ! ,

       i,k = 1,2,...,n; ю,v = 1,2,...,n+1=N; SIGM|| = 1 при i=k;

       ik

       n

       -SIGM|| = 0 при i /= k; ds**2 = > dx|**2 + d ALPHA**2 .

       ik -- i

       i=1

       Такую простую форму интервал имеет при специальном выборе системы координат (смешанная система: n координат декартовы, а (n+1)-я описывается в одномерной сферической системе). Разумеется, в общем случае метрика имеет более сложный вид. Однако в одном важном для нас частном случае,

       1 когда окружность S| описывается в комплексной плоскости, соотношение (10) сохраняется. Этот вывод следует из двух фактов, лежащих в основе теории комплексных чисел:

       iA 1) функция f(ALPHA) = e|| описывает в комплексной плоскости окружность с радиусом, равным единице, и 2) модуль функции

       * f(ALPHA) равен единице: f| (ALPHA) * f (ALPHA) = 1 .

       Приведем пример нетривиального трехмерного расслоения. С этой целью рассмотрим аналог рис.1. Рассмотрим вначале

       1 простое произведение окружности S| на цилиндрическую поверхность, которую можно получить путем простого склеивания прямоугольной полоски бумаги так, чтобы краевые

       1 1 точки A и B, A| и B| совпали (рис.2,а). Однако можно полоску

       1 перекрутить так, чтобы точка A совпала бы с точкой B|, а

       1 точка B - с точкой A| (рис.2,б). В результате получается поверхность, называемая листом Мёбиуса. Такая поверхность может быть совокупностью слоев над базой - окружностью. Однако ясно, что при перемещении вдоль окружности-базы слои утрачивают свое равноправие. Так, слой AB остался неизменным: он перпендикулярен плоскости, в которой находится окружность. Другие же слои повернулись на некоторый угол, который зависит от от расстояния от линии AB. В общем случае расслоенное пространство - сравнительно сложная конструкция. Мало задать пространство базы и пространство слоев. Нужно еще и зафиксировать отношения между ними. Идея определения этого отношения заимствована из дифференциальной геометрии, где эта идея - лишь одна из возможностей измерения отклонения пространства от евклидова. Для расслоенных пространств общего вида описанный ниже метод, пожалуй, основной.

       Ранее мы упоминали, что искривленное пространство характеризуется различными величинами: отклонением суммы углов треугольника от PI (неевклидовость), отличием метрики пространства от евклидовой метрики и, наконец, кривизной пространства. Однако существует сравнительно наглядная характеристика искривленности, называемая связностью. Для обычного (нерасслоенного) пространства связность определяется совокупностью углов между данным малым линейным элементом поверхности и всеми соседними малыми элементами.

       Чтобы сделать это наглядное определение математически более строгим, необходимо сформулировать общее правило параллельного переноса векторов.

       В евклидовой геометрии параллельный перенос отрезка прямой линии - стандартная операция с достаточно очевидным результатом. Если переносить этот отрезок параллельно самому себе вдоль замкнутого контура, то в результате полного обхода контура конечная прямая совпадет с первичной. Однако такой результат неочевиден (и даже неверен) для кривой поверхности.

       Чтобы понять дальнейшие рассуждения, следует сделать некоторое усилие и отрешиться от привычных и наглядных представлений о параллельных в евклидовом пространстве.

       Прежде всего определим для кривой поверхности однозначный аналог прямой между двумя точками. Уже упоминалось, что в общем случае этого требования недостаточно для однозначного определения "прямой" между двумя точками. Оно оказывается достаточным, если обе точки расположены близко друг к другу. Тогда кратчайший отрезок, соединяющий обе точки, называется геодезической линией. Если нужно провести геодезическую линию (аналог прямой) для двух произвольных точек, то ее составляют из отрезков геодезических, соединяющих близкие точки.

       Процедура параллельного переноса была предложена итальянским ученым Т.Леви-Чивита. возьмем на поверхности две

       1 бесконечно-близкие точки M и M| и рассмотрим в точке M вектор поверхности a (лежащий в касательной плоскости к поверхности). Если перенести вектор a параллельно самому

       1 себе (в евклидовом смысле) в точку M|, то он не будет лежать

       1 в касательной плоскости в точке M| поверхности и не будет вектором поверхности. Спроектируем вектор a на касательную

       1 1 плоскость к поверхности в точке M|, тогда получим вектор a|,

       1 лежащий в касательной плоскости к поверхности в точке M| и

       1 являющийся вектором поверхности. По определению, вектор a|

       1 является параллельно перенесенным в точку M| вектором a. Если точки M и N отстоят на бесконечном расстоянии, то их следует соединить кривой, лежащей на поверхности, разбить ее на бесконечно малые участки и к каждому применить процедуру параллельного переноса. Получающийся в результате вектор зависит от вида соединяющей исходную и конечную точки кривой. Если кривая замкнута, то при возвращении в исходную точку параллельно перенесенный вектор не будет совпадать с исходным, а составит с ним некий угол BETA. Этот угол равен нулю, если параллельный перенос производится вдоль геодезической линии. Это связано с тем, что при параллельном переносе угол между переносимым вектором и геодезической линией не меняется.

       ===РИС.3

       На рис.3 изображена сферическая поверхность, на которой демонстрируется описанная процедура параллельного переноса. В результате параллельного переноса "прямой" вдоль окружности на сфере между первичным и конечным векторами возникает угол BETA /= 0 .

       Можно предложить простую "экспериментальную" иллюстрацию параллельного переноса. Проведем краской на плоскости несколько параллельных прямых. Прокатим далее по этой плоскости конус, постулируя отсутствие трения между конусом и плоскостью, в том смысле, что трение не меняет первоначальное направление движения конуса, но достаточно велико, чтобы нанесенные на плоскость прямые отпечатались бы на конусе. Эти отпечатки и будут параллельными на конусе. Относительное положение двух близких отпечатков отражает параллельный перенос на конусе.

       Уже упоминалось, что связность отлична от нуля для кривого пространства. Поэтому связность - одна из нескольких характеристик искривления (отклонения от евклидовости) геометрической фигуры.

       До сих пор мы придерживаемся сравнительно привычных представлений. Пространства с обычными понятиями "точка" всегда можно хотя бы упрощенно иллюстрировать в виде двумерной поверхности. Сейчас наступило время перейти к расслоенным пространствам. Такой переход связан с некоторой психологической перестройкой. Хотя простейшие расслоенные пространства также можно мысленно представить в виде геометрических фигур, но всегда, когда оперируют с расслоенными пространствами, следует помнить, что они множество пространств, находящихся в неравноправном положении. Одно из них - база - занимает особое место.

       Если среди характеристик простых пространств связность занимает рядовое место ( одна из нескольких характеристик), то в теории расслоенных пространств обобщенное понятие связности, пожалуй, основная характеристика. Связность в расслоенных пространствах играет ключевую роль: она характеризует отношения между базой и слоями и между соседними слоями.

       В общем случае определение связности имеет довольно сложный вид.' Мы здесь ограничимся простым и наглядным примером определения связности и некоторыми важными для физики приложениями.

       -----------------------------------------------------------' См. кн.: Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. М.; Наука, 1979, Т.1. -----------------------------------------------------------

       Вернемся снова к рис.3. Круг и цилиндр на нем расслоение полусферы, изображенной в верхней его части. Построим на полусфере треугольник, образованный геодезическими линиями - отрезками больших кругов. Разумеется (поскольку сфера - неевклидова поверхность), сумма углов треугольника не равна PI. Спроецируем точки треугольника на круг (базу), параллельный основанию полусферы. Прямые, осуществляющие проецирование, будем полагать слоями расслоенного пространства.

       Произведем далее операцию параллельного переноса на полусфере вдоль контура треугольника. Поскольку полусфера неевклидова поверхность, то при полном обходе треугольника (возвращение вектора в точку, совпадающую с началом вектора a) между направлениями первичного и конечного векторов (стрелки на рисунке) образуется некоторый угол - связность.

       Обобщим это понятие на расслоенное пространство. С этой целью спроецируем треугольник на круг (базу). Прямые, осуществляющие проекцию, - слои пространства. Проекции начального и конечного векторов на полусфере образуют на круге некоторый угол v /= 0, который является компонентой связности в базе.

       Чтобы определить связность в слоях, введем расстояние от начала слоя (отрезка), которое является, вообще говоря, произвольной точкой отсчета. Важно лишь, чтобы во всех слоях были бы одинаковые точки отсчета. Иначе говоря, любой круг, пересекающий слои и параллельный основанию полусферы, мог бы определить точки отсчета. Естественно (но не необходимо) отождествить точки отсчета с точками круга - базы. Будем далее измерять угол между векторами во время параллельного переноса в произвольных единицах (например, радианах) и откладывать этот угол на прямых - слоях пространства. В результате операции полный обход периметра треугольника на сфере будет соответствовать некоторому подъему величины проекции в слое. Этот подъем определяется смещением векторов в полусфере при возвращении в точку, совпадающую с началом вектора a после полного обхода контура. В пространстве слоев

       1 начало обхода на полусфере соответствует точке a|, конец 1 1 1 d| (см. рис.3). Таким образом, расстояние a|d| характеризует связность в слое.

       Расслоение полусферы на круг и линейное пространство одно из простейших расслоений, позволяющих дать наглядную интерпретацию связности расслоенного пространства. В общем случае подобная наглядность утрачивается. Идея введения общего определения связности близка к основной идее дифференциальной геометрии: в малом объеме метрика пространства евклидова или псевдоевклидова. В расслоенных пространствах также постулируется простота пространства в малом. Полагается, что в малом расслоенное пространство можно представить простым произведением, частным случае которого и было расслоение полусферы.

       В результате обхода микроконтура в полном пространстве или базе определяется компонента связности в базе. Далее в соответствии с приведенным выше примером операция обхода микроконтура количественно отображается в пространстве слоев, определяя таким образом связность в этом пространстве.

       В заключение сделаем одно замечание, имеющее, как мы увидим далее, прямое отношение к физике (динамике). Хотя значение связности определяется однозначно, однако операция ее вычисления неоднозначна. Это утверждение - следствие

       1 неоднозначности в выборе начальной точки отсчета a|. Сделанный нами выбор: начало обхода контура соответствует пересечению слоя (прямой) и базы (круга) - обусловлен

       1 простотой. Точку a| можно было бы сместить вдоль соответствующей прямой (слоя) на произвольную величину.

       1 Связность определяется не положением точки a|, а разностью

       1 1 отрезком a|d|.

       ГЛАВА 2. Д И Н А М И К А

       1. ВРЕМЯ

       Классическая геометрия (Евклида, Лобачевского, Римана) по своему существу статична. И хотя в ее пределах правомочна операция переноса фигур, но она имеет лишь одно предназначение: установление их равновеликости. Поэтому этот перенос (как правило, мысленный) может осуществляться бесконечно быстро или сколь угодно медленно. Скорость переноса, а следовательно, и его время геометров не интересовали. Геометрия была вне времени. Видимо, время было тем фактором, который более всего способствовал тому, что до конца прошлого столетия геометрия и физика существовали раздельно.

       Можно точно указать годы, когда зарождалось представление об общности геометрии и времени и когда это представление приобрело ясную и недвусмысленную формулировку. Идея единства пространства-времени была сформулирована Г.Минковским в 1907 г., ей предшествовало создание специальной теории относительности А.Эйнштейном, А.Пуанкаре и Х.Лоренцом в 1904-1905 гг.

       Разумеется, нельзя абсолютизировать (даже в историческом плане) утверждение о независимости геометрии и времени. Геометрические образы - неизменное сопровождение механики, а время - ее основополагающее понятие. Как только возникало слово "время", так от классической, дорелятивистской геометрии следовал переход к динамике. Время - неизбежный спутник динамики.

       После создания теории относительности статус времени существенно изменился: оно стало равноправным партнером пространства. Возникла новая геометрия - геометрия пространства-времени. После создания общей теории относительности (ОТО, 1915-1916 гг.) геометрия и динамика в рамках ОТО слились воедино.

       После краткого вступления уместно задать вопрос: что такое время? Казалось бы, что ответ на этот вопрос ясен; достаточно использовать какое-либо признанное определение, заимствованное из бесчисленного количества книг, посвященных пространству-времени или исключительно времени. Имея в виду такое решение, автор обратился к двум современным, специально посвященным времени изданиям: книгам Ф.С.Заславского "Время и его измерение" (М.: Наука, 1977) и Дж.Уитроу "Структура и природа времени" (М.: Знание, 1984). В этих книгах можно найти множество интересных сведений. Например, о представлении времени у обезьян и небольших индейских племен, о методах измерения времени в древности и в эпоху средневековья, есть здесь и мысли древних философов о времени, и многое другое. Однако предмет поиска определение физического времени - в этих книгах отсутствовал.

       Разумеется, можно было бы продолжить поиски единственного и правильного определения, однако после зрелого размышления сделалась очевидной их бессмысленность. Представилось очевидным, что определение времени - задача совсем не простая. Вероятно, не худшим выходом было решение упомянутых выше авторов книг о времени сделать вид, что вопроса не существует.

       Тем не менее кажется необходимым дать если не определение, то по крайней мере описание понятия физического времени. Известно, что определить понятие означает подвести под него другое более широкое понятие. Но время - настолько широкая категория, что, быть может, лишь Вселенная и материя являются более объемными понятиями. Не претендуя, разумеется, на единственность и абсолютную правоту приведенного далее определения, можно все же сделать попытку в этом направлении.

       Итак, физическое время - это количественная мера упорядоченной эволюции материального объекта как целого от его возникновения до гибели.

       Это определение нуждается в пояснениях, из которых естественно следует, что лаконичность - не синоним простоты. В определениях неявно фигурируют следующие допущения.

       1. Объект характеризуется целостностью в том смысле, что у него есть единое время.

       2. У каждого объекта собственное время, которое, вообще говоря, не совпадает с временем других объектов.

       3. Все объекты рождаются и умирают.

       Требует пояснения также и понятие "упорядоченной эволюции".

       Начнем комментарии по порядку.

       1. Макроскопический объект, т.е. тело, состоящее из нескольких (>=2) частей, априорно не должно характеризоваться единым временем. Наш повседневный опыт как будто подтверждает существование единого времени, характеризующего эволюцию объекта как целого. Однако такое заключение несколько иллюзорно и связано с тем, что в рамках повседневного опыта относительная скорость v отдельных частей макроскопического тела удовлетворяет условию v/c << 1 (c - скорость света). Если v/c ~ 1, то в соответствии с теорией относительности каждая часть тела обладает своим собственным временем. Однако при обычных скоростях условие v/c << 1 выполняется, и постулат о целостности достаточно оправдан.

       2. В соответствии со сказанным ранее два тела можно рассматривать как составные части одного, и, следовательно, они характеризуются своим собственным временем. Однако наша Метагалактика во всех ее частях характеризуется единым временем в том смысле, что в любой момент все свойства (характеристики) Метагалактики одинаковы.

       3. Постулат о рождении и смерти всех всех объектов является следствием опытных данных. Рождается и погибает все, начиная от элементарных частиц и кончая галактиками и их скоплениями. Исключение составляет Метагалактика в целом, в том смысле, что никто не наблюдал ни ее начала, ни конца. Но никто из специалистов не сомневается в том, что когда-то (примерно (15-20)*10**9 лет назад) было рождение Метагалактики и когда-то ее не станет.

       Таким образом, все сформулированные постулаты выполняются с достаточной точностью. Более того, из комментария ко второму допущению следует, что <(существует единое метагалактическое время, которое можно принять за эталон времени всех находящихся в ней объектов)>. Если бы дело обстояло иначе, Метагалактика не обладала бы однородностью во всех ее точках и время протекало бы по-разному в разных ее частях, что, вероятно, привело бы к различию в физических закономерностях, а это, в свою очередь, к нарушению мировой гармонии и путанице невообразимому усложнению физических законов.

       Особого анализа требует понятие упорядоченной эволюции. Ясно, что рождение предшествует смерти, причина - следствию. Причинно-следственные связи реализуются в том, что время имеет определенное направление от прошлого к будущему. Время является одномерным вектором, направленным от прошлого к будущему. Бытовая реализация этой основной характеристики сводится к делению времени на три относительные эпохи: прошлое, настоящее и будущее. Для единого тела, характеризуемого единым временем, это деление абсолютно, и его можно провести всегда. Для тела, состоящего из частей, это деление усложняется: вследствие конечности скорости света существует отрезок времени, когда четкое разделение провести нельзя (см. разд.4 гл.2).

       Любопытно, как проблема деления времени на прошлое, настоящее и будущее нашла отражение в афоризме Аристотеля: "Времени почти нет, ибо прошлого уже нет, будущего еще нет, а настоящее длится мгновение". Прошлого действительно нет, оно - было, так же как и будущее - будет. Об этом свидетельствуют многочисленные эмпирические факты, относящиеся к компетенции физики. Строго говоря, Аристотель ошибся, утверждая о существовании настоящего (хотя бы и мимолетного), понимаемого в эйнштейновском смысле. Как уже говорилось, для сложных тел нет абсолютного времени, а следовательно, о настоящем можно говорить лишь условно, в пределах неопределенности, определяемой разностью времен для частиц, составляющих сложное тело.

       Подведем некоторые итоги. Можно дать краткое определение физического времени. Однако оно содержит понятия, сами нуждающиеся в доопределениях, которые, в свою очередь, требуют разъяснений, и так ad infinitum. Вероятно, такая ситуация - отражение фундаментальности времени. Тем не менее дать пусть даже неполное определение времени было необходимо. Иначе трудно (или, скорее, невозможно) обсуждать взаимосвязи пространства-времени и динамики.

       И в заключение еще одно замечание. Существует вопрос, который на разном уровне обсуждается в литературе: можно ли выделить начало отсчета времени. Этот вопрос задавался практически со времени возникновения цивилизации. Как правило, начало отсчета связывалось с предполагаемым актов рождения мира. У народов Ближнего Востока начало отсчета (рождение мира) полагается 6-8 тыс. лет назад. Более рационально мыслящие римляне точку отсчета отождествляли с основанием Рима (753 г. но н.э.). На Западе сейчас повсеместно летоисчисление ведут от предполагаемого дня рождения Христа, которое было "вычислено" римским монахом Дионисием в 524 г., а затем канонизировано.

       Для нас, пожалуй, важен не калейдоскоп начал отсчета или эпох, а другой факт, имеющий глубокий смысл. Как человеческая история, так и физические явления не зависят от точки отсчета времени. В этом отражается его исключительно важное свойство - трансляционная инвариантность: независимость физических законов от точки отсчета. На языке математики эта инвариантность означает неизменность физических законов при преобразовании типа

       t' -> t+a, a=const (11)

       Мы, со своей стороны будет стараться по возможности придерживаться "физического" летоисчисления, принимая за точку отсчета (t=0) время возникновения Метагалактики (15-20 млрд лет назад). Иногда в физической литературе этот момент отождествляется с временем возникновения Вселенной. Встречаются также утверждения, что вообще говорить о времени до возникновения Метагалактики (при t<0) бессмысленно. Нам представляется, что эти утверждения неверны и далее (гл.3) мы приведем аргументы, подтверждающие нашу точку зрения.

       2. КЛАССИЧЕСКАЯ ДИНАМИКА И ЕЕ ГЕОМЕТРИЯ

       Предмет классической динамики (ньютоновской механики) определение изменения состояния (положение, скорость и т.д.) тел во времени. Абстрагируясь от влияния смежных физических дисциплин, можно сказать, что ньютоновская динамика занимается определением движения материальных точек при заданном положении внешних тел.

       Решение основной проблемы классической механики предполагает априорное определение физического пространства, в котором движутся материальные точки. В рамках ньютоновской физики оно отождествляется с пространством Евклида.

       Одна из задач механики - вычисление траектории тела (материальной точки) в этом пространстве.

       Траектория описывается математической кривой, однако не тождественна ей. Математическая кривая - образ, существующий безотносительно к другим объектам или системам координат. Этот образ возник задолго до создания аналитической геометрии. Иное дело - физическая траектория. Это понятие имеет лишь относительный смысл: траектория материальной точки определяется относительно другого тела, обычно называемого телом отсчета.

       Абсолютного движения не существует. По этой причине физики предпочитают говорить не о системе координат, а о системе отсчета, подразумевая, что это понятие включает также и тело отсчета. Если оно может быть отождествлено с материальной точкой, то его обычно принимают за начало координат. Подчеркнем, что здесь мы встречаемся не с терминологическими уточнениями. В отличие от начала координат тело отсчета, как правило, влияет, а иногда и определяет состояния исследуемого тела (материальной точки).

       В классической динамике пространство определяет взаиморасположение тел в данный момент времени в их противопоставлении к пустоте (в классическом смысле). Несколько перефразируя определение времени, данное в предыдущем разделе, можно сказать, что пространство есть мера неупорядоченной эволюции относительно состояния тела. Это определение, так же как и предшествующее, нуждается в некоторых комментариях.

       Пространственные соотношения характеризуют относительное положение материальных тел, включая и тело отсчета. Временные же соотношения также включают точку отсчета, но эта точка относится к тому же самому телу, время эволюции которого определяется.

       Но кардинальным физическим отличием пространства от времени является факт, что первое не содержит аналога принципа причинности. Расстояния между двумя произвольными точками A и B пространства (взятые безотносительно ко времени) эквивалентны: AB=BA. Временные же интервалы t|t| и

       1 2 t|t| (t| > t|) существенно неэквивалентны. Время t| 2 1 2 1 2 будущее относительно времени t. Иллюстрацией этих положений является система двух событий (At|, Bt|), причинно-связанных

       1 2 между собой. Событие At| влияет на событие Bt|, обратное

       1 2 влияние отсутствует. Однако тела, расположенные в точках A и B, симметричны. Их пространственная характеристика - вектор -> -> AB эквивалентен вектору BA.

       В основе ньютоновской механики находится понятие инерциальных систем отсчета, играющее особую роль, поскольку, строго говоря, законы Ньютона относятся именно к этому классу систем отсчета. К сожалению, как это часто бывает с основополагающими понятиями, определения инерциальной системы многообразны и не полностью отражают ее свойства, что может привести, а иногда и приводит к недоразумениям.

       Однако полный анализ понятия инерциальной системы отсчета выходит за рамки основной темы, и далее мы ограничимся лишь кратким его рассмотрением. Пока же примем наиболее популярное определение инерциальной системы отсчета, представленное в классическом курсе теоретической физики Л.Д.Ландау и Е.М.Лифшица: "...можно найти такую система отсчета, по отношению к которой пространство является однородным и изотропным, а время однородным. Такая система называется инерциальной".`

       -----------------------------------------------------------` Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М., Наука, 1973. Т.1. Механика. С.14. -----------------------------------------------------------

       Из этого определения следует ограниченность понятия инерциальной система отсчета. Оно приложимо к (квази)точечным телам - материальным точкам. Макроскопическое тело, состоящее, по определению, из многих точечных тел, само выделяет из первичного пространства Евклида объем, нарушающий его однородность и изотропию. Следовательно, использование понятия инерциальной системы применительно к макроскопическим телам, вообще говоря, неоправданно. И действительно, существует ряд парадоксальных физических ситуаций (релятивистское преобразование температуры, выбор формы электромагнитного тензора энергии-импульса в макроскопических телах и т.д.), когда отсутствует однозначное решение четко и корректно сформулированной проблемы. На наш взгляд , эта неоднозначность обусловлена чрезмерно широким употреблением понятия инерциальной системы. Но подробнее обсуждение этой проблемы находится вне основной линии книги. Мы лишь во избежание недоразумений будем использовать инерциальные системы для (квази)точечных тел.

       Здесь уместно напомнить основные свойства инерциальных систем отсчета. В этих системах законы ньютона имеют наиболее простой вид (отсутствуют силы инерции). Все механические явления, происходящие в двух инерциальных системах, движущихся с постоянной скоростью друг относительно друга, протекают одинаково.

       Иначе говоря, законы движения в двух инерциальных системах координат инвариантны при переходе от одной системы отсчета к другой. Отмеченную инвариантность уместно выразить на языке линейных преобразований. Для простоты ограничимся двумерным евклидовым пространством. Пусть в инерциальной системе I точка (событие) представлена координатами x|, y|,

       1 1 а система II (координаты x|, y|) движется с постоянной

       2 2 скоростью v относительно системы I. Тогда из свойств евклидова пространства и инерциальных систем отсчета следует, что уравнения движения в этих системах должны быть инвариантны относительно замены:

       x| = x| cos ALPHA + y| sin ALPHA + vt cos BETA + a , 2 1 1

       y|= -x| sin ALPHA + y| cos ALPHA + vt sin BETA + b , (12) 2 1 1

       где ALPHA - произвольный угол поворота системы отсчета I, BETA - угол между направлениями O|O| и O|x|. Постоянные a и

       1 2 2 2 b отражают однородность (трансляционную инвариантность) евклидова пространства. Условие (12) является обобщением аналитического определения статического евклидова пространства. Евклидово пространство однородно и изотропно. Следовательно, при произвольном преобразовании декартовой системы координат осуществляются соотношения:

       x| = x| cos ALPHA + y| sin ALPHA + a , 2 1 1

       y|= -x| sin ALPHA + y| cos ALPHA + b , (13) 2 1 1

       Таким образом, инерциальные системы отсчета - основа динамики - являются обобщением статического евклидова пространства. Это обобщение отражается включением членов, содержащих множитель vt, обуславливающих равноправие всех инерциальных систем отсчета.`

       -----------------------------------------------------------` Более подробно о взаимосвязи между ньютоновской динамикой и евклидовым пространством см. в кн.: Яглом И.М. Принцип относительности Галилея и неевклидова геометрия. М.: Наука. 1969. -----------------------------------------------------------

       Пожалуй, интересно отметить, что в течение многих столетий доминировала механика, в которой допустимые преобразования представлялись соотношениями (13). Эта механика была унаследована от Аристотеля, который полагал, что любое движение (в том числе и равномерное) обусловлено внешним воздействием. Потому в рамках такой механики существовала единственная привилегированная система отсчета - та, к которой тело покоилось. Естественно, что геометрия, соответствующая подобной механике, была тождественна геометрии Евклида.

       Преобразование (12) подчеркивает особенность классической механики. Время t и скорость v никак не связаны с пространственными координатами и могут принимать любые значения. Поэтому, хотя пространство, представленное геометрией Евклида, имеет определенную метрику (в данном случае x**2 + y**2 = const), совокупность времени и пространственных координат такой определенной метрикой не обладает.

       3. "ВЫВОД" КЛАССИЧЕСКОЙ ДИНАМИКИ

       ИЗ СВОЙСТВ ПРОСТРАНСТВА

       Почти во всех учебниках физики характеристики пространства и уравнения движения излагаются независимо. Поэтому создается впечатление, переходящее в убеждение, о независимости этих основных элементов физики. В действительности же свойства пространства (евклидовость) практически предопределяют классическую динамику.

       Ограничимся (как условились ранее) анализом системы двух тел, одно из которых будем полагать телом отсчета, а другое материальной точкой, положение которой характеризуется вектором r и временем t. Из определения инерциальной системы отсчета следует, что они являются единственной привилегированной системой отсчета, поскольку она отражает наиболее общие свойства пространства изотропию и однородность. Для системы двух тел существует единственное выделенное направление - вектор r, соединяющий тело отсчета и материальную точку.` Поэтому все динамические и кинематические величины будут направлены вдоль вектора r. Обозначим меру воздействия на материальную точку символом Ф. По определению, воздействие, а следовательно и сила, инвариантно относительно равномерного движения инерциальной системы. Поскольку существует единственное выделенное направление r, то функция Ф определяется вектором r или его производными dr/dt, d**2 r/dt**2, d**3 r/dt**3... (предполагается, что они параллельны). Действие в принципе может зависеть от констант m|, m|,... , характеризующих

       1 2 материальную точку

       dr d**2 r Ф = Ф (m|, m|, ... , r, ---- , -------- , ...) . (14)

       1 2 dt dt**2

       Однако при учете свойств инерциальной системы это выражение сильно упрощается. Действительно, в общем случае аргументы r и v = dr/dt исключаются вследствие эквивалентности инерциальных систем. Всегда можно выбрать систему, в которой в данный момент v=0. Производные высших порядков: d**3 r/dt**3, d**4 r/dt**4,... в общем виде также не могут определять движение, поскольку в этом случае, помимо выделенного класса систем отсчета (соответствующего v=const), существовали бы и другие привилегированные системы отсчета, удовлетворяющие условиям a = d**2 r/dt**2=const или b = d**3 r/dt**3=const и т.д. Поскольку рассматривается материальная точка, то естественно допустить, что она характеризуется единым параметром m=m|. Поэтому (14) можно

       1 записать в форме

       d**2 r Ф = Ф (m , -------- ) . (15)

       dt**2

       Величина m - внутренняя характеристика тела, вторая производная d**2 r/dt**2 определяется взаиморасположением тела отсчета и материальной точки. В рамках ньютоновской механики обе величины абсолютно независимы. Поэтому естественно предположить, что они входят в выражение (14) в виде произведения

       d**2 r Ф = Ф (m -------- ) . (16)

       dt**2

       Назовем силой функцию F, обратную функции Ф, тогда получаем основной закон

       d**2 r F = m -------- . (17)

       dt**2

       -----------------------------------------------------------` Строго говоря, здесь пренебрегается возможным вращением системы. Обобщение рассуждений, учитывающих вращение, не представляет трудностей. -----------------------------------------------------------

       Из свойств пространства вытекают характеристики дальнодействующих сил, составляющих основу классической механики.

       Назовем дальнодействующими (макроскопическими) силами такие воздействия, которые в статическом случае (т.е. когда тело отсчета неподвижно) можно характеризовать силовыми линиями, начинающимися в теле отсчета, но не изменяющимися в пустом пространстве. Иными словами, в пустом пространстве силовые линии - прямые. Если же силовые пересекают материальную точку, то они взаимодействуют с ней, прекращая свое существование.

       Заметим, что "прямолинейность" силовых линий нетривиальное допущение, которое характерно исключительно для дальнодействующих сил. Для микроскопических взаимодействий силовые линии либо запутываются, взаимодействую друг с другом, утрачивая прямолинейность (сильное взаимодействие), либо обрываются (слабое взаимодействие). На современном языке необходимыми и достаточными условиями дальнодействия сил являются неравенства

       ALPHA << 1, m| = 0 ,

       c

       где ALPHA - безразмерная константа взаимодействия, m|

       c массам обменной частицы (см. Дополнение). Далее в этом разделе ограничимся исключительно дальнодействующими макроскопическими силами.

       Поскольку силовое воздействие является точечным и осуществляется в месте расположения материальной точки, то единственная характеристика сил, обусловленная этим расположением, есть плотность d силовых линий. Поэтому сила, действующая на материальную точку, пропорциональна плотности силовых линий: F~d. Но в силу изотропии и однородности пространства полное число силовых линий неизменно, а плотность силовых линий неизменно, а плотность силовых линий макроскопического взаимодействия обратно пропорциональна площади сферы с центром, расположенным в начале координат (теле отсчета). Эта сфера проходит через материальную точку. поскольку площадь сферы в трехмерном евклидовом пространстве пропорциональна r**2 (r - расстояние между телом отсчета и материальной точкой), то

       F~1/r**2. (19)

       Мы получили выражение для макроскопических сил: силы Кулона и силы Ньютона.

       Таким образом, оба закона - следствие особых свойств трехмерного евклидова пространства.

       Следовательно, как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию тесной связи основ динамики и свойств пространства, нельзя полностью свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил. Можно (как это происходило в действительности) на опыте измерить зависимость (19), на более современном уровне установить соотношения (18), которые также являются следствием экспериментов.

       Однако общие соотношения отражают свойства пространства, и наша цель - демонстрация тесной связи этих свойств и простейшей динамики.

       4. ПРОСТРАНСТВО

       СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

       (ПРОСТРАНСТВО МИНКОВСКОГО)

       Теории относительности посвящено огромное число книг, написанных на разных уровнях. Поэтому нецелесообразно представлять здесь систематическое изложение этой теории. Идея этого и следующего разделов несколько скромнее: очертить лаконично идею взаимосвязи геометрии и динамики, обусловленную созданием теории относительности, которая изменила сам стиль этой взаимосвязи. Ранее (в ньютоновской механике) эта взаимосвязь проявлялась как бы неявно: в определении инерциальной системы, мельком упоминалась при выводу законов сохранения и т.д. После утверждения теории относительности единство геометрии и динамики стало краеугольным камнем физики.

       Специальная теория относительности базируется на двух постулатах.

       1. Существует класс эквивалентных инерциальных систем отсчета. (Этот постулат оправдывается свойствами пространства: изотропией и однородностью.)

       2. Скорость света в пустоте постоянна и не зависит от движения его источника или приемника.

       К этому постулату, выдвинутому А.Эйнштейном в 1905 г., мы привыкли. А привычка часто является синонимом тривиальности. В действительности он связан с двумя нетривиальными допущениями. Во-первых, скорость света c не подчиняется обычному классическому правилу сложения скоростей: v| = v| + v| (v| - суммарная скорость, v|

       3 2 1 3 1 скорость источника, v| - скорость испущенной материи, в

       2 данном случае скорость света). И, во-вторых, этот постулат также связан с утверждением об евклидовости пространства. Отсутствие однородности или неизотропия пространства также привели бы к его нарушению. Физической иллюстрацией возможности подобного нарушения евклидовости является существование макроскопических тел и сильных (>=10**13 Гс) электромагнитных полей. В областях, где находятся эти объекты, скорость света отличны от c. Поэтому при формулировании второго постулата особо подчеркивается свойство среды, в которой распространяется свет (пустота). Верные традиции этой книги, мы остановимся на простейшей системе, состоящей из тела отсчета и материальной точки (пробного тела).

       В математическом плане второй постулат специальной теории заключается в том, что время распространения света t между началом координат O и точкой (x, y, z) определяется уравнением

       (ct)**2 - x**2 - y**2 - z**2 = 0 (20)

       или в дифференциальной форме

       (cdt)**2 - dx**2 - dy**2 - dz**2 = 0 (21)

       Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) - направленный вектор: существует принцип причинности, различающий будущее и прошлое.

       В соответствии с обозначениями дифференциальной геометрии выражение (21) записывается в форме

       ds**2 = (cdt)**2 - dx**2 - dy**2 - dz**2 = 0 (22)

       Второй постулат теории относительности можно сформулировать на геометрическом языке как утверждение, что для света (в пустоте) интервал ds**2 инвариантен относительно вращений и трансляций в 4-мерном континууме пространства-времени.

       Инвариантность интервала ds**2 нетрудно обобщить и на случай тела и системы отсчета, движущейся со скоростью v/=c. Из опыта известно, что скорость света в пустоте максимальна. Поэтому это неравенство следует уточнить так: v

       Рассмотрим две инерциальные системы координат, движущиеся со скоростью v друг относительно друга. Из (22) следует, что если в одной системе координат ds=0, то и в другой ds'=0. Рассмотрим общий случай: v=<c. Поскольку ds и ds' бесконечно малые одинакового порядка и при v -> c выполняется (22), то и в общем случае ds и ds' могут отличаться лишь постоянным множителем. Из изотропии и однородности пространства следует, что этот множитель равен 1`. Следовательно, интервал

       ds**2 = (cdt)**2 - dx**2 - dy**2 - dz**2 = const (23)

       относительно вращений и трансляций.

       -----------------------------------------------------------` Подробнее доказательство этого утверждения представлено в кн.: Ландау Л.Д., Лифшиц Е.М. Теория поля. 6-е изд. М.: Наука, 1973, С.16. -----------------------------------------------------------

       Геометрия, в которой интервал имеет вид (23), называется псевдоевклидовой. Из равенства малых интервалов следует также и инвариантность конечных интервалов.

       Инвариантность интервалов ds или s - математической отражение принципиально нового подхода к взаимосвязи пространства и времени. Пространство и время образуют единый математический континуум. Формально это выражается в том, что они составляют пространство Минковского.

       Инвариантность интервала ds или s является основой для вывода важнейших следствий теории относительности. чтобы упростить дальнейшие рассуждения, мы ограничимся одной пространственной координатой x. Обобщение на трехмерное пространство (x, y, z) не представляет труда, все сделанные далее выводы при этом сохраняются.

       ===РИС.4

       Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s>=0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.

       Графически можно можно все пространство-время (x,t) разделить на четыре области (рис.4). Пусть две пересекающиеся линии соответствуют уравнениям x = +-ct. Тогда области внутри угла AOB соответствуют будущему; внутри угла COD - прошлому, а углам AOC и BOD - неопределенной ситуации, которая в общем случае зависит от движения системы отсчета. В этом смысле надо понимать сделанное выше замечание относительно тезиса Аристотеля (отсутствие настоящего). Настоящее, соответствующее одновременно происходящим в разных точках пространства событиям, есть понятие относительное. Оно зависит от движения системы отсчета.

       Рассмотрим далее преобразование координаты x и времени t при переходе от одной системы отсчета (x,t) к другой (x',t'), движущейся со скоростью v относительно первой.

       Условие, определяющее это преобразование, инвариантность интервала s=s'. Это условие определяет преобразование, которое является единственным с точностью до тривиального переноса начала системы отсчета

       x' = x ch PSI + ct sh PSI,

       (24) ct' = x sh PSI + ct ch PSI,

       PSI - аналог угла поворота декартовой системы в евклидовом пространстве (ср. с преобразованием (13)). В формуле (24) ch и ch - гиперболические функции в отличие от обычных тригонометрических функций в соотношении (13). Эта разница определяется тем, что в евклидовом (двумерном) пространстве Inv = x**2 + y**2 - окружность, а в псевдоевклидовом пространстве Inv = t**2 - x**2 - гипербола.

       Положим для простоты x=0. Это допущение не уменьшает общности рассуждений, однако сильно упрощает выкладки. Тогда

       x' = ct sh PSI, ct' = ct ch PSI. (25)

       Учитывая, что x'/t'=v, из (25) следует, что th PSI = v/c. Используя известные соотношения для гиперболических функций, легко получить

       sh PSI = (v/c) [1-(v/c)**2]**(-1/2),

       (26) ch PSI = [1-(v/c)**2]**(-1/2),

       после чего из формул (24) и (26) следуют преобразования Лоренца:

       x+vt x' = ------------------ ,

       -------------,

       \/ 1-(v/c)**2

       (27)

       t+vx/c**2 t' = ------------------ .

       -------------,

       \/ 1-(v/c)**2

       Из соотношений (27) следует:

       1. При v/c<<1 преобразования Лоренца переходят в преобразования Галилея (12).

       2. Интервалы длины и времени преобразуются соответственно:

       ^x ^x' = ------------------ ,

       -------------,

       \/ 1-(v/c)**2

       (28)

       ^t ^t' = ------------------ .

       -------------,

       \/ 1-(v/c)**2

       Наметим далее вывод из метрических свойств пространства Минковского уравнения движения материальной точки

       p=mu, (29)

       где u - скорость частицы.

       В ньютоновской механике v = dx/dt; m=const (t абсолютное время). Чтобы обобщить импульс в рамках теории относительности, нужно проделать две операции, специфические для теории относительности: 1) условиться о системе отсчета, в которой определяется время; 2) обобщить 3-мерные векторы ньютоновской физики на 4-мерное пространство Минковского. Иначе говоря, следует ввести 4-мерный вектор, который при v/c -> 0 переходил бы в 3-мерный евклидов вектор, а в рамках теории относительности был бы аналогом 4-вектора (t,x,y,z). Найдем 4-мерный аналог скорости v=dx/dt. В русле идей теории относительности существует выделенная (собственная) система отсчета, связанная с материальной точкой. Действительно, в этой системе величина dx=const и время t=TAU однозначно связано с инвариантным интервалом ds. В том же случае, когда тело "истинно" точечное (dx=0), то ds=c d TAU. Поэтому естественно в формуле для скорости положить

       u=dx/d TAU (23)

       и на основании (23)

       v

X,y,z u|| = ------------------ , x,y,z -------------,        \/ 1-(v/c)**2        где индексы x, y, z отмечают компоненты по соответствующим осям.        Чтобы величина u была бы 4-вектором, нужно доопределить четвертую компоненту. В нашем распоряжении есть единственная величина, имеющая размерность скорости: скорость света c. Поэтому аналог временной компоненты 4-скорости:        c u| = ------------------ . (32) t -------------,        \/ 1-(v/c)**2        Тогда выражение (29) для импульса можно записать в форме        p| = m|u|, i 0 i        ult m| - масса в собственной системе отсчета. Индекс i        0 отмечает номер компоненты 4-скорости. Легко проверить, что величины p| (i=1,2,3,4 или t,x,y,z) образуют 4-вектор.        i Действительно,        (p|)**2 - (p|)**2 -(p|)**2 -(p|)**2 = (m|c)**2 = Inv . (34) t x y z 0        По существу (34) есть частное следствие общего определения пространства Минковского: квадрат 4-вектора инвариант относительно поворотов и трансляций в этом пространстве. Другим важнейшим примером этого правила является инвариантность интервала. Отличие от векторного определения пространства Евклида сводится к правилу знаков: квадрат временно-подобной компоненты берется со знаком "=", а квадраты пространственно-подобных компонент - со знаком "-". Если потребовать сохранения формы (29) для выражения импульса в релятивистской механике через обычную скорость, то следует изменить определение массы, положив        m m = ------------------ . (35)        -------------,        \/ 1-(v/c)**2        Все выводы релятивистской динамики, и в частности формулы (33) - (35), превосходно согласуются с экспериментальными данными, полученными на ускорителях. Точнее, они служат основой для конструирования больших ускорителей, образуя новую область, лежащую на стыке фундаментальной физики и инженерных дисциплин: релятивистскую инженерную физику.        5. ЭЙНШТЕЙНОВСКАЯ ТЕОРИЯ ТЯГОТЕНИЯ        Специальная теория относительности, геометрический образ которой воплощен в пространстве Минковского, вызывает невольные ассоциации с величайшими творениями искусства. Сочетание величия человеческого духа и лаконичности придают этой теории те качества, которые отличают настоящие ценности.        Тем не менее специальная теория относительности отражение законов природы и поэтому, как и вся физические принципы, характеризуется определенными границами. Произведение искусства - автономно, научная теория неизбежно ограничена невидимыми (а зачастую и зримыми) проявлениями прогресса экспериментальной физики и логикой.        И у специальной теории относительности есть границы применимости. Они проявляются довольно отчетлива, однако (и в этом одна из причуд истории науки) их не принято детально обсуждать. В этом нет, вероятно, никакой злонамеренности. подобная ситуация имеет простую психологическую подоплеку. В первые десятилетия после создания теории относительности у нее существовало столько принципиальных и беспринципных противников, что борьба велась не по линии теории ценных деталей, а по вопросу: быть или не быть теории относительности. И когда экспериментальные данные блестяще подтвердили специальную теорию относительности, а ее противники оказались полными банкротами, в общественном мнении возобладала антитеза отрицания - ее полная абсолютизация.        Однако беспристрастный анализ продемонстрировал, что и у специальной теории есть свои проблемы, которые частично были блестяще использованы Эйнштейном при создании общей теории относительности, а частично вообще ускользнули из поля зрения научной общественности.        Для того, чтобы изложить эти проблемы, мы будем опираться на мысленные эксперименты, которые так часто "проводились" в начале столетия. В частности, на них опирался Эйнштейн в процессе создания теории относительности.        Трудно скрыть известную ностальгию по этой почти ушедшей эре, когда в физике царила наглядность, а формальные аспекты были на втором плане. К сожалению, в науке не всегда возможен стиль "ретро", но все-таки будем стремиться к максимальной наглядности. Вообразим систему отсчета, в которой движутся два тела (1 и 2) с разными скоростями. Тогда в области расположения тела 1 в соответствии с формулами (28) о сокращении масштабов пространство будет искажено: его однородность будет нарушена. Следовательно, будет нарушено основное условие определения инерциальной системы отсчета. Фактически многочастичное макроскопическое тело своим объемом нарушает однородность и изотропию пространства. Тем самым подрываются основы определения инерциальной системы координат. Макроскопическое (неточечное) тело нарушает свойства пространства Минковского: его однородность и изотропию. Поэтому становится проблематичным его использование для описания макроскопического тела.        Это рассуждение - пример мысленного эксперимента. В нашем распоряжении нет твердых тел, которые можно разгонять до релятивистских скоростей, и поэтому непосредственная экспериментальная проверка выводов теории относительности применительно к макроскопическим телам затруднительна. Теоретические же рассуждения на эту тему (релятивистские преобразования температуры) лишены убедительности и однозначности, характерных для специальной теории относительности точечных тел.        Но закроем глаза на эти проблемы, уводящие в сторону от основной линии книги, и попробуем применить эту теорию к конкретному макроскопическому телу - вращающемуся диску, знаменитому диску Эйнштейна. Пусть диск, являющийся абсолютно твердым телом, вращается равномерно вокруг своего центра. Очевидно, что линейные скорости точек диска, расположенные на разных расстояниях от центра, будут различны (пропорциональны расстояниям r). Тогда в соответствии с формулами (29) в этих точках будет различное сокращение. Пространство станет неоднородным, а следовательно, неевклидовым. Вращение диска есть неинерциальное ускоренное движение. Из этих двух фактов Эйнштейн заключил, что ускоренное движение нарушает евклидовость (псевдоевклидовость) пространства.        В случае равномерного вращения диска и соответствующего постоянному во времени ускорению легко оценить, как меняется метрика пространства, заполненного диском, в зависимости от расстояния r. Вычислим, в частности, 4неевклидовость" пространства на расстоянии r, если задана угловая скорость вращения OME. Если OME = 0, то пространство евклидово, т.е. d/r = 2 PI. (d - длина окружности в системе покоя диска). Если OME /= 0 , то в направлении по радиусу диска масштаб останется несмещенным, следовательно, длина окружности увеличится в [1-(OME r/c)**2]**(-1/2) раз. Во вращающейся        d' d -1/2 системе координат --- = --- [1-(OME r/c)**2] > 2 PI,        r r          что и является мерой неевклидовости.        Нетрудно установить и метрику, соответствующую угловой скорости OME /= 0 . В цилиндрических координатах при OME = 0 интервал        ds**2 = (c dt)**2 - dr**2 - (r dFI)**2 , (36)        где FI - азимутальный угол.        Если OME /= 0, то r=r'? FI=FI+OME t , и интервал имеет вид        (ds')**2 = [c**2-(OME r')**2 (dt)**2 - 2 OME (r'**2 dFI' dt - (r' dFI')**2 - (-r')**2 . (37)        По какому бы закону ни преобразовывалось время, метрика (37) является римановой метрикой (6). Из того факта, что при ускоренном движении (вращение диска) возникает неевклидовость, которая представляется римановой метрикой, естественно допустить, что ускоренные движения изменяют метрические свойства пространства, а постоянно ускорение (OME = const /= 0) приводит к обобщению пространства Минковского - пространству Римана. Именно эта идея Эйнштейна (взаимосвязь геометрии и динамики) кардинально изменила наши представления о неком абсолютном континууме пространства-времени. Даже пространство Минковского было в известном смысле абсолютно (независимость метрики от динамики). Общая теория относительности уничтожила эти остатки абсолютизации. Однако ограничиваться утверждением, что динамика влияет на свойства пространства, - это почти ничего не сказать. Это общее утверждение, а физики базируется на конкретных уравнениях. Чтобы их сформулировать, Эйнштейн придумал второй мысленный эксперимент (лифт Эйнштейна). Основная его идея базируется на факте (опыты В.Г.Брагинского и сотрудников), установленном с фантастической точностью (до двенадцатого знака): равенство гравитационной и инертной массы. из этого утверждения и законов Ньютона следует, что любое тело движется в однородном гравитационном поле с одинаковым ускорением. А мы видели, что такое движение приводит к изменению метрики пространства. Однако (и это составляет суть второй гипотезы Эйнштейна) пространство всегда остается римановым. Следовательно, интервал не зависит от системы отсчета: ds**2 = (ds')**2 .        Третья кардинальная идея Эйнштейна и основывается на первых двух. Риманова метрика определяется расположением тел в пространстве. Как обычно, фундаментальное физическое уравнение следует записать на языке инвариантов. Не останавливаясь на цепи рассуждений, отметим лишь, что уравнения гравитации следовало бы сформулировать на языке кривизн и тензора энергии импульса. Уравнение Эйнштейна имеет вид        R|| - 1/2 g|| R = (8 PI G / c**4) T|| , (38) юv юv юv        где R|| - тензор кривизны, R - скалярная кривизна, T||        юv юv тензор энергии-импульса:        T|| = (EPS+p) u| u| - pg|| , (39) юv юv        здесь EPS - плотность энергии, p - давление, u - 4-скорость. Инвариантные характеристики кривизны R|| и R определяются        юv компонентами метрического тензора и его производными по времени. Мы не будем здесь выписывать эти довольно громоздкие выражения, которые можно найти в любой монографии, посвященной общей теории относительности.        Таким образом, расположение частиц материи (тензор T||)        юv определяет характеристики Риманова пространства (R||, R).        юv Однако это влияние взаимно. Движение частиц, в свою очередь, определяется геометрией. Частицы движутся в римановом пространстве (гравитационном поле) по кратчайшим расстояниям - геодезическим.        Сделаем некоторые комментарии к уравнению (38).        1. Уравнение Эйнштейна не является полной геометризацией динамики. В правой части находится тензор T||, отражающий свойства материи. Уравнение (38) лишь юv отражает тесную связь между геометрией и динамикой.        2. При нашем весьма упрощенном подходе к уравнению (38) мы, следуя Эйнштейну, опирались на весьма идеализированные мысленные эксперименты. Этот подход неоднократно подвергался критике и модифицировался. Однако почти всегда и при более рафинированном подходе получали уравнения гравитации в форме (38) или близкой к ней.        3. Уравнение (38) прекрасно согласуется со всеми (правда, немногочисленными) экспериментальными данными.        4. Вывод уравнений Эйнштейна на основе (более строгих" аргументов в известной мере бессмыслен. На поверку оказывается, что и эти строгие аргументы также содержат дополнительные постулаты. Этот факт отражает наше убеждение, что строгий "вывод" фундаментальных уравнений едва ли возможен. Об этом свидетельствует не только опыт вывода уравнений Эйнштейна, но и выводы основных уравнений электромагнитного поля (Максвелл) или уравнений электронов и позитронов (Дирак). В обоих случаях авторы исходили из аргументов, которые впоследствии критиковались. Однако уравнения Максвелла, Дирака и Эйнштейна - основа современной физики. Их справедливость была обусловлена в значительной степени красотой (симметрией), логичностью аргументации и гениальной интуицией авторов. Совершенствовать аргументацию фундаментальных уравнений физики - дело праведное, отрицать же их величие - верх нелепости. По нашему мнению, последняя оценка относится и к попыткам их канонизации - отрицанию ограниченности любой самой великой теории.        6. ОБЪЕДИНЕННАЯ ТЕОРИЯ        ВЗАИМОДЕЙСТВИЙ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ        Одна из основных (а быть может, и главная) задач современной физики - построение объединенной теории взаимодействий. В настоящее время достаточно хорошо изучены четыре фундаментальных взаимодействия: гравитационное, слабое, электромагнитное и сильное (см. Дополнение). Конечная цель заключается в том, чтобы написать единое уравнение, описывающее все четыре взаимодействия. Эта задача включает три элемента: 1) описание объединенного взаимодействия с помощью одной или нескольких констант взаимодействия, 2) включение в уравнение общих характеристик взаимодействий, 3) исключение из теории бесконечных величин, которые с неизбежностью возникают при использовании изолированных, необъединенных взаимодействий.        Рассмотрим эти составляющие объединенной теории более детально. На первый взгляд первая задача - описание разных взаимодействий с помощью единой константы - утопия. Константы различных взаимодействий имеют разные величины, отличающиеся друг от друга на много порядков.        Однако такое категорическое утверждение кардинально неверно. Дело в том, что константы всех взаимодействий зависят от передаваемого во время взаимодействия импульса массы m. При такой операции зависимость константы от передаваемой массы (импульса) существенно различна для разных взаимодействий. Константа ALHPA|, характеризующая        e электромагнитное взаимодействие, зависит от передаваемой массы чрезвычайно слабо, и мы будем в дальнейших рассуждениях этой зависимостью пренебрегать, полагая ALPHA| (m) = const.        e        Константа ALHPA| сильного взаимодействия, описываемого        s квантовой хромодинамикой, зависит от передаваемой массы приблизительно логарифмически. При условии m >> m|        p (m| ~~ 10**-24 г - масса протона) теоретическая зависимость p ALPHA| (m) имеет вид        s        ALPHA| ~ (ln m\m|)**-1 (40)        s p        Константы ALPHA| ALPHA| слабого и гравитационного        w g взаимодействий квадратично (~m**2) зависят от передаваемого импульса (массы).        Именно разные энергетические зависимости констант ALPHA (m) и определяют потенциальную возможность их совпадений при некоторых значениях m. Здесь следует подчеркнуть именно потенциальность возможности существования значения m, при котором произойдет пересечение трех или четырех констант при едином значении m. Подобная ситуация отличается от предсказаний относительно совпадения двух констант, когда вполне естественно ожидать пересечения двух кривых ALPHA| (m) и ALPHA| (m) в одной точке.        1 2        Таким образом, возможность объединения взаимодействий совпадения констант ALPHA при определенном значении m apriori не очевидна. Лишь расчеты зависимостей ALPHA (m) могут подтвердить или опровергнуть возможность объединения констант. Здесь речь идет именно о расчетах, поскольку (как мы увидим ниже) масштабы масс, при которых происходят объединения трех и четырех взаимодействий, намного превосходят возможности современных или даже будущих ускорителей.        Чтобы оценить масштабы масс, при которых происходит объединение, следует приравнять выражения ALPHA|, ALPHA|,        w s ALHPA| значению ALPHA|~0.01, которое (как мы отмечали ранее)        g e можно полагать постоянной. Тогда получаем следующие значения масс, объединяющих различные взаимодействия (см. таблицу).        Значение массы, при Объединение взаимодействий котором происходят        объединения (m|)        p        Электромагнитное-слабое 10**2 Электромагнитное-слабое-сильное 10**15 Электромагнитное-слабое-сильное-гра- 10**19        витационное        Из этой таблицы следует ряд примечательных следствий. Во-первых, объединение трех и четырех взаимодействий в принципе возможно, поскольку существуют значения масс, при которых происходит слияние трех и четырех констант. Во-вторых, в объединенных теориях возникают огромные масштабы масс - 10**15 m| и 10**19 m|. Например, для        p p представления об этих величинах достаточно напомнить, что гипотетический кольцевой ускоритель с размером, равным диаметру Земли, мог бы ускорять частицы до энергии ~10**7 m|. И наконец, третье: электрослабое взаимодействие p характеризуется "человеческими" масштабами: ~100 m|. Эти        p энергии уже достижимы на самых больших современных ускорителях. И действительно, в 1983 г. на ускорителе ЦЕРНа -Коллайдере были открыты переносчики слабого взаимодействия        +- 0 - W||- и Z|-бозоны со значениями масс, точно соответствующими теории Глешоу-Вайнберга-Салама, описывающей это взаимодействие.        Следует, пожалуй, пояснить причину возникновения масштабов масс в теориях, объединяющих электромагнитное, слабое и сильное взаимодействия (большое объединение) и все четыре взаимодействия (супергравитация). В большом объединении этот масштаб возникает из-за вялой, логарифмической зависимости ALPHA|(m) (см. (40)).        s Приравнивая ALPHA| = ALHPA|, получаем массу объединения        s e m|~~10**15 m|. Масштаб характерной массы супергравитации x p (объединении всех взаимодействий) - следствие малости постоянной Ньютона, обуславливающей в свою очередь малость значения ALPHA| в низкоэнергетическом пределе: m~m|.        g p        Перейдем далее к определению общности свойств функций, описывающих состояние систем. Разумеется, речь идет о фундаментальных свойствах, общих для всех систем достаточно широкого класса (например, материальных точек).        На математическом языке это означает, что уравнения, определяющие изменение функций состояния во времени, инвариантны относительно определенных групповых преобразований.` Простейшим примером такой инвариантности является трансляционная инвариантность. Простейшим примером такой инвариантности является трансляционная инвариантность уравнений Ньютона. Ни уравнения, ни физическое состояние системы не меняются при замене x' -> x+a, где a - некое постоянное число. Можно привести и другой пример групповой инвариантности. Рассмотренное ранее в гл.1 вращение системы координат также оставляет уравнения механики инвариантными. Группа, соответствующая вращению N-мерной сферы, называется группой вращения. Можно сказать, что уравнения механики (впрочем, это относится также и к электродинамике, хромодинамике и ко всем взаимодействиям, кроме гравитационного) инвариантны относительно преобразований группы трехмерных вращений, что отвечает изотропии трехмерного пространства Евклида.        -----------------------------------------------------------` Напоминаем, что группой называется совокупность математических объектов, для которых определена некая операция, иногда называемая умножением. Группа определена, если выполняются следующие условия: 1) если a, b элементы группы, то произведение a*b - также элемент группы; 2) (a*b)*c=a*(b*c); существует единичный элемент I, такой, что для любого элемента выполняется равенство I*a=a*I=a; существует обратный элемент a**-1: a*a**-1=I. -----------------------------------------------------------        Однако основная идея объединения взаимодействий относится не к макроскопическому пространству Евклида, а к "внутреннему" пространству элементарных частиц, отражающему их квантовые числа (см. Дополнение). Это пространство проще всего отождествить с расслоенным пространством, где база пространство Минковского, а пространства, соответствующие квантовым числам элементарных частиц (спину, изотопическому спину и цвету - см. Дополнение), являются слоями. Слои можно представить как сферы, "прикрепленные" к каждой точке базы. Векторы состояний вращаются внутри сфер-слоев в соответствии с правилами квантовой механики.        Вообще говоря, нет априорных правил выбора этих слоев, и в частности их размерности. Видимое отсутствие этих правил отражает известный произвол в выборе квантовых чисел частиц - переносчиков взаимодействия. Поэтому на первый взгляд выбор этих квантовых чисел и масс частиц-переносчиков является лотереей, в которой выигрыш - счастливая случайность. Такой подход можно назвать феноменологических в том смысле, что в нем отсутствует руководящий принцип, ограничивающий выбор частиц-переносчиков. Однако сейчас господствует убеждение, что такой принцип существует. Это принцип калибровочной инвариантности, и его изложению и геометрической интерпретации будет посвящена значительная часть книги.        Пока же мы ограничимся замечанием, что выбор общей группы и является одной из трех проблем объединения взаимодействия. Наконец, последняя из перечисленных проблем, решение которых необходимо для создания объединенной теории взаимодействия, - устранение бесконечностей из результатов вычислений. Желательно, чтобы эти бесконечности отсутствовали бы и в промежуточных выкладках, однако необходимое условие замкнутости теории - отсутствие бесконечностей в окончательных результатах (перенормируемость теории). Сравнительно недавно существовала лишь одна перенормируемая теория - квантовая электродинамика. Объединение слабого и электромагнитного взаимодействия (теория Глешоу-Вайнберга-Салама) привело к тому, что рассматриваемая изолированно неперенормируемая теория слабого взаимодействия оказалась лишь частью целого красивой, перенормируемой теории электрослабого взаимодействия. Удалось построить такую теорию, что бесконечности скомпенсировали друг друга; в результате получились конечные результаты, превосходно согласующиеся с экспериментом.        Квантовая гравитация - существенно неперенормируемая теория. Можно сказать, что это свойство гравитации глубоко внутренне присуще ей. Естественный путь преодоления этого дефекта видится в построении теории, объединяющей все четыре взаимодействия - супергравитации, когда бесконечности, существующие в каждой изолированной теории, скомпенсируются. На этом пути есть определенные достижения, но расстояние до окончательной цели - построения полностью перенормируемой супергравитации - кажется еще весьма большим.        7. КАЛИБРОВОЧНАЯ ИНВАРИАНТНОСТЬ        ОСНОВНОЙ ДИНАМИЧЕСКИЙ ПРИНЦИП        В предыдущем разделе мы сформулировали три основополагающих принципа построения объединенной теории. Однако первый (требование единства константы) и третий (устранение бесконечностей) принципы имеют ясно очерченный алгебраический характер (единое число, конечность теоретических выражений), то второй - единый тип симметрии кажется менее определенным. В самом деле, симметрий, воплощенных в теорию групп, бесконечно много, и совершенно не очевидно, чем следует руководствоваться при их выборе. Правда, ясны общие принципы, связанные с симметрией наблюдаемого 4-пространства Минковского (изотропия и однородность). Эти пространственные симметрии являются, как известно, первопричиной основных законов сохранения: закона сохранения энергии-импульса, закона сохранения момента импульса и инвариантности уравнений движения относительно преобразований Лоренца. Однако пространственно-временной симметрии и обусловленных ею законов сохранения совершенно недостаточно для обнаружения руководящей нити в безбрежном море возможных симметрий.        Такая ситуация (отсутствие основной идеи) продолжалась сравнительно долго, и частично она была причиной неудач в попытках Эйнштейна и других выдающихся физиков построить единую теорию поля. Однако в последние два десятилетия постепенно намечались, а затем четко очертились контуры руководящего принципа поиска "истинной" симметрии динамических уравнений. Эта симметрия, известная под названием калибровочной инвариантности, была обнаружена очень давно - со времен первых исследований электромагнитных явлений, однако вначале она казалась излишеством. Затем, в двадцатых годах XX в., в особенности после работ немецкого математика и физика Г.Вейля (крестного отца этого типа симметрии), к ней привыкли, но не придавали ей сколько-нибудь решающего значения. Лишь после успехов в создании теории объединенного электрослабого взаимодействия и квантовой хромодинамики - теории сильного взаимодействия среди специалистов возникло общее убеждение: калибровочная инвариантность есть основной динамический принцип.        Констатация широкой популярности калибровочного принципа при длительном непонимании его важности не есть просто дань риторике. Вероятно, подобная ситуация отражение узловых парадоксов физики, являющихся двигателем ее прогресса. Уверенность в важности калибровочного принципа возникла на пересечении двух течений физики, которым, казалось, никогда не слиться в единое русло.        В 1954 г. работающие в США физики Ч.Янг и Ф.Миллс исследовали новый тип уравнений, описывающих безмассовые поля на основе калибровочного принципа. Но поскольку единственной в те времена известной безмассовой частицей переносчиком взаимодействия был фотон - основная частица электромагнитного взаимодействия, то уравнения Янга-Миллса посчитали физико-математической экзотикой.        В 1964 г. при полном отсутствии какой-либо видимой связи с уравнениями Янга-Миллса независимо М.Геллман и Г.Цвейг выдвинули весьма экзотическую по тем временам теорию кварков. Исключительная необычность этой теории заключалась в дробном (сравнительно с электроном) значении электрического заряда. Таких частиц никто и никогда не наблюдал, хотя их обнаружение по величине ионизационных потерь было бы весьма простым делом. Поэтому к модели кварков вначале было отношение двойное: с одной стороны привлекало ее исключительное изящество и простота, с другой - видимое противоречие с экспериментом (отсутствие реальных кварков) подрывало привычную для физических теорий основу экспериментальное обнаружение фундаментальных объектов. Однако с годами число косвенных подтверждений гипотеза кварков быстро увеличивалось, что привело к возросшему числу верящих в нее. И примерно в начале 70-х годов возникла необходимость в описании взаимодействия между кварками. Тогда вспомнили о теории Янга-Миллса, которая качественно объясняла невылетание кварков из реальных адронов`. Оказалось также, что эта теория, примененная к модели кварков, и количественно объясняет многие экспериментальные факты. Постепенно создавалось убеждение, что теория Янга-Миллса составляет основу интерпретации взаимодействия кварков. Эта теория применительно к кваркам получила название квантовой хромодинамики по аналогии с квантовой электродинамикой. Замена "электро" на "хромо" объясняется тем, что кварки (как и любые сильно взаимодействующие частицы) характеризуются цветовым (chromo) зарядом, подобно тому как электроны и протоны характеризуются электрическим зарядом (см. Дополнение). Уже упоминалось, что теория Янга-Миллса (квантовая хромодинамика) базируется на калибровочной инвариантности. Эта же симметрия лежит в основе объединенного электрослабого взаимодействия. Поэтому возникло убеждение, что именно калибровочная симметрия базис единого взаимодействия.        -----------------------------------------------------------` Количественно эта проблема не решена полностью и сейчас, хотя невылетание кварков реализуется в рамках некоторых упрощенных моделей. -----------------------------------------------------------        В этом разделе мы изложим элементарные представления о калибровочной симметрии и ее фундаментальной роли.        Верные нашей схеме, мы рассмотрим простейшую систему, состоящую из двух тел. Первое, тяжелое, определяет систему отсчета, воздействует на второе тело и создает статическое (независящее от времени) поле. Движение второго тела (частицы) определяется этим полем. Движение второго тела (частицы) определяется этим полем. Понятие калибровочной инвариантности основано на постулате существования некоторой неизмеряемой на опыте функции состояния системы, но определяющей это состояние. В частном случае статического электрического поля такой функцией состояния является потенциал FI. Известно, что абсолютное значение FI не определяет никакие физические характеристики системы. Простейшее проявление этого принципа - безопасность прикосновения к одному из двух проводов, по которым протекает ток. Более сложным выводом является утверждение, что энергия системы, или работа, реализуемая при перемещении из точки x| в точку x|, определяется не абсолютными        1 2 значениями потенциалов FI(x|) и FI(x|), а исключительно их        1 2 разностью FI(x|) - FI(x|). Следовательно, значение        1 2 потенциала определено с точностью до аддитивной постоянной. Если во всем пространстве (для статической системы) изменить потенциал на одну и ту же величину b, то физическая ситуация останется неизменной.        Этот пример - простейшее и давно известное проявление калибровочной инвариантности. Однако из данного выше общего определения калибровочной инвариантности следует неоднозначность постулируемой функции состояния. Действительно, если функция определяет состояние в точке x, но не измеряется на опыте, то все физические характеристики должны зависеть от производных этой функции или (как в случае статического поля, рассмотренного выше) от разности FI(x|) - FI(x|). В обоих случаях прибавление к функции FI        1 2 величины b        FI' -> FI+b (41)        не меняет физическую ситуацию.        Различают два вида калибровочной инвариантности: 1) величина b=const(x), т.е. постоянна во всем пространстве (в этом случае говорят о глобальной калибровочной инвариантности); b=b(x) (этот случай соответствует локальной инвариантности        Мы остановимся в основном на более простом первом случае. Далее мы продемонстрируем простейшее приложение калибровочного принципа - вывод закона Кулона и закона сохранения в электростатике.        Простейшие соображения таковы. Поскольку рассматриваемая система состоит из двух тел, то вектор силы, действующий на пробное тело, должен быть направлен по линии, соединяющей оба тела. Единственный вектор, удовлетворяющий этому условию и калибровочной инвариантности, есть grad TI = d FI / dr. В частности, работа, производимая такими силами, равна интегралу         r| 2 ---\ \ d FI \ ---- dr = FI (r|) - FI (r|) . \ dr 1 2        \ \-- r| 1        Существенно, что в рамках электростатики осуществляется глобальное (а не локальное) калибровочное преобразование. Отсюда можно вывести важное следствие: если потенциал нашей системы представляется некоторой функцией FI(r), то калибровочное преобразование (изменение потенциала в каждой точке на постоянную величине b) не изменяет основного свойства пространства: изотропию и однородность. Поскольку наша система относительно тела отсчета была сферически-симметричной, то, следовательно, все наблюдаемые физические величины (энергия, сила, действующая на пробное тело) также должны характеризоваться сферической симметрией.        Таким образом, величины grad FI или FI(x|) - FI(x|)        1 2 определяют наблюдаемые физические величины. Отсюда следует, что работа, произведенная калибровочным полем, однозначно определяется разностью FI(x|) - FI(x|) и не зависит от пути,        1 2 по которому двигалась пробная частица. Тогда можно показать, что число силовых линий статического калибровочного поля остается неизменным в пространстве (во времени оно неизменно вследствие условия статичности). Действительно, существуют две возможности изменения числа силовых линий: 1) их "обрыв" на границе некоторой пространственной области и 2) пересечение, "взаимодействие" силовых линий в некоторых точках x|, x| ,... /= x|, x| . Обе возможности противоречат        3 4 1 2 следствию о независимости работы от пути, проходимого частицей. Действительно, рассмотрим первое допущение. Работа, производимая при переносе тела из точки x| до        1 границы области, зависит от точки границы x|, а работа,        k производимая при переносе тела из точки x| в точку x|, равна        k 2 нулю. Следовательно, суммарная работа зависит от пути, что противоречит основному постулату.        Если же силовые линии пересекаются, то силы, действующие на пробную частицу, зависят от конкретной формы пересечения силовых линий в некоторых точках x|, ... , x|.        1 k Это должно также привести к зависимости работы от пути. Следовательно, число силовых линий калибровочного поля (FI' -> FI+b) точечного источника в статическом случае взаимодействия в том смысле, который указан в разд.3 этой главы. Для такого случая выполняется закон F~1/r**2.        Вывод о неизменности числа силовых линий можно получить из калибровочной инвариантности и несколько иным путем. Поместим в начало отсчета две заряженные частицы, обладающие зарядами e| и e|, характеризующими их силовые поля.        1 2 Суммарное поле FI на расстоянии r можно представить в общем виде:        FI[(e|+e|),r]=FI|(e|,r)+FI|(e|,r)+FI|(e|,e|,r) . (42)        1 2 1 1 2 2 3 1 2        Произведем калибровочное преобразование, соответствующее каждому из зарядов:        FI'[(e|+e|),r] -> FI[(e|+e|),r] + b ,        1 2 1 2        FI'(e|,r) -> FI|(e|,r) + b , (43)        1 1 1        FI'(e|,r) -> FI|(e|,r) + b .        2 2 2        Уравнения (42) и (43) совместны, если FI(e|,e|,r) = -b = const(r), что соответствует глобальному        1 2 калибровочному преобразованию. Иначе говоря, из него следует принцип суперпозиции:        FI[(e|+e|),r]=FI|(e|,r)+FI|(e|,r) , (44)        1 2 1 1 2 2        который также отражает слабость взаимодействия.        Мы до сих пор рассматривали систему из двух частиц. Однако вследствие принципа суперпозиции все выводы нетрудно обобщить на статическую систему, состоящую из любого числа частиц.        Таким образом, электростатика, базирующаяся на законе Кулона, - следствие калибровочной инвариантности. Очевидно (к этому мы привыкли из школьного курса физики) и обратное утверждение: глобальное калибровочное преобразование следствие закона Кулона. Калибровочная инвариантность взаимосвязана с электростатикой. Далее мы проиллюстрируем общность взаимосвязи динамики и калибровочной инвариантности.        Остановимся на другом важнейшем следствии калибровочной инвариантности. Опираясь на факт существования функции FI(x), которая определяет работу при перемещении пробного тела из точки x| в точку x|, можно сделать вывод о        1 2 сохранении заряда (пока в рамках электростатики). Действительно, по определению, заряд - мера воздействия тела (в нашем примере тела отсчета) на силовое поле или мера реакции пробного тела на величину силового поля. Пусть по пути из точки x| в точку x| заряд пробного тела изменится, а        1 2 заряд тела отсчета останется неизменным. Тогда работа не будет определяться исключительно разностью FI(x|)-FI(x|). Аналогичное рассуждение можно провести, полагая, что заряд тела отсчета изменится.        Однако в силу принципа суперпозиции (см.(44)), если оба тела соприкоснутся, заряд с одного тела может перейти на другое тело. Принцип суперпозиции вполне консистентен переходу заряда от одного тела к другому при условии сохранения суммы зарядов.        Таким образом, мы продемонстрировали закон сохранения заряда для системы, состоящей из двух тел. Далее мы поясним этот закон в общем случае и в случае нестатических систем. До сих пор мы анализировали простейшую физическую ситуацию электростатику. Однако вид калибровочной инвариантности однозначно определяет и самые общие уравнения движения и форму квантовой теории полей. Здесь же мы лишь наметим аргументацию этого утверждения. Дело в том, что его доказательство в полном объеме требует хорошего знакомства с квантовой теорией поля. Но даже и на таком уровне весь комплекс вопросов, основанный на принципе калибровочной инвариантности, на наш взгляд, изложен в литературе (особенно учебной) неполно. И этот факт прискорбен. Хотя, по нашему мнению, аксиоматическое изложение физики невозможно, однако выявление основных принципов и дедуктивное ее изложение кажется весьма целесообразным как с дидактических позиций, так и с точки зрения выявления общих граней разнородных физических объектов и теорий. Сейчас же в учебной литературе (в том числе в курсах теоретической физики) калибровочный принцип излагается походя, как бы между прочим. В специальной же литературе, посвященной калибровочной теории, обычно затрагиваются не все аспекты этого принципа. Мы попытаемся дать лаконичное и поэтому не слишком строгое изложение основных сторон этого принципа.        Калибровочный принцип обуславливается типом частицы переносчика взаимодействия. Достаточным условием калибровочной инвариантности является равенство нулю массы частиц-переносчиков.        Рассмотрим классическое движение, которое, как известно, определяется уравнениями Лагранжа. Уравнения Лагранжа определяются вариацией лагранжиана, который должен быть функцией от скаляров, которые естественно являются релятивистскими инвариантами.        Рассмотрим простейшее калибровочное поле электромагнитное. Допустим, что электромагнитное поле представляется релятивистским 4-вектором A|. Тогда из        i векторов можно образовать только два типа скаляров        i i (скалярных произведений): eA|dx| и aA|A| (здесь индекс i        i i пробегает значения i=1,2,3,4; e,a - постоянны). Пусть все реальные физические величины инвариантны относительно калибровочного преобразования:        A|' -> A| + DLf/DLx| , (45) i i i        где f - некоторая произвольная функция при калибровочных преобразованиях от 4-координат. Тогда можно написать следующее равенство:         i DL(ef) i eA| dx| + -------- dx| = eA|dx| + d(ef) , (46)        i DLx| i i        i        где d(ef) - полный дифференциал от функции ef. Однако прибавление полного дифференциала к лагранжиану не изменяет уравнения движения. Замена же (45) в квадрате        i вектора A|A| приводит к изменению лагранжиана, и,        i i следовательно, член A|A| нарушает калибровочную        i инвариантность уравнений движения. Следовательно, лагранжиан        i не может содержать скаляры типа A|A|. В теории поля        i демонстрируется, что эти члены могут появиться в том случае, когда частицы - переносчики взаимодействия - характеризуются ненулевой массой. Следовательно, чтобы удовлетворить условию (46), достаточно, чтобы масса частицы-переносчика была бы строго равна нулю. В электродинамике такой частицей является фотон. Экспериментально установлено, что масса фотона m

lt; 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы - электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m

GAMMA        С другой стороны, из принципа неопределенности следует, что радиус действия сил, обусловленных частицей-переносчиком ~HP/mc . Для электродинамики это означает, что электромагнитные силы - дальнодействующие. Их радиус r|~~HP/m

C при m|| = 0 равен бесконечности. Этот факт        GAMMA GAMMA для электростатики следовал из простых физических соображений (см. выше).        Ввиду исключительной важности калибровочного принципа мы здесь наметим другой вывод уравнения электродинамики в рамках квантовой теории.        В квантовой механике состояние представляется волновой функцией PSIG. Вообще говоря, функция PSIG - комплексное число; среднее значение какой-либо динамической величины A равно интегралу        ---\        \ * = \ PSIG| (x) A PSIG (x) dx , (47)        \        \        \--        x - точка в пространстве Минковского. Ясно, что значение величины инвариантно относительно преобразования        i ALPHA PSIG'(x) -> e


Дата добавления: 2021-01-21; просмотров: 170; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!