II . Свойства карбоксильной группы (кислотность)



Тема: Аминокислоты

Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты. В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов. Аминокислоты — органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH2. Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой. КЛАССИФИКАЦИЯ Аминокислоты классифицируют по структурным признакам. 1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д. 2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные. 3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить пара-аминобензойная кислота: Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота НОМЕНКЛАТУРА По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы. Например: Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита. Пример: Для α-аминокислот R-CH(NH2)COOH, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия. Таблица. Некоторые важнейшие α-аминокислоты
Аминокислота Сокращённое обозначение Строение радикала ( R )  
Глицин Gly (Гли) H -
Аланин Ala (Ала) CH3 -
Валин Val (Вал) (CH3)2CH -
Лейцин Leu (Лей) (CH3)2CH – CH2 -
Серин Ser (Сер) OH- CH2 -
Тирозин Tyr (Тир) HO – C6H4 – CH2 -
Аспарагиновая кислота Asp (Асп) HOOC – CH2 -
Глутаминовая кислота Glu (Глу) HOOC – CH2 – CH2 -
Цистеин Cys (Цис) HS – CH2 -
Аспарагин Asn (Асн) O = C – CH2 – │ NH2
Лизин Lys (Лиз) NH2 – CH2- CH2 – CH2 -
Фенилаланин Phen (Фен) C6H5 – CH2 -

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино-, три группы NH2триамино- и т.д.

Пример:

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота:

ИЗОМЕРИЯ

1. Изомерия углеродного скелета

2. Изомерия положения функциональных групп

3. Оптическая изомерия

α-аминокислоты, кроме глицина NН2-CH2-COOH.

ФИЗИЧЕСКИЕ СВОЙСТВА

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

ПОЛУЧЕНИЕ

3. Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют α - аминокислоты белков.

ХИМИЧЕСКИЕ СВОЙСТВА

Аминокислоты амфотерные органические соединения, для них характерны кислотно-основные свойства.

I . Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярныйцвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

Видео-опыт « Свойства аминоуксусной кислоты»

2. Поликонденсация → образуются полипептиды (белки):

При взаимодействии двух α-аминокислот образуется дипептид.

3. Разложение → Амин + Углекислый газ:

NH 2 - CH 2 - COOH → NH 2 - CH 3 + CO 2

II . Свойства карбоксильной группы (кислотность)

1. С основаниями → образуются соли:

NH2-CH2-COOH + NaOHNH 2 - CH 2 - COONa + H2O

NH2-CH2-COONa - натриевая соль 2-аминоуксусной кислоты

2. Со спиртами → образуются сложные эфиры – летучие вещества (р. этерификации): NH2-CH2-COOH + CH3OH HCl (газ)NH 2 - CH 2 - COOCH 3 + H2O

NH2-CH2-COOCH3 - метиловый эфир 2- аминоуксусной кислоты

3. С аммиаком → образуются амиды:

NH 2 - CH ( R )- COOH + H - NH 2 → NH 2 - CH ( R )- CONH 2 + H 2 O

4. Практическое значение имеет внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона):


Дата добавления: 2021-01-20; просмотров: 57; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!