Скорость распространения возбуждения



 

В 1846 г.И. Мюллер писал: "Время, необходимое для передачи ощущения с периферии тела в мозг и для возвращения возбуждения к мышцам, бесконечно мало и измерено быть не может". Однако всего через 4 года это время удается измерить.

Мюллер, как мы упоминали, считал возбуждение проявлением "жизненной силы", а как она распространяется - кто знает! Но и электрический сигнал по проводам тоже распространяется почти мгновенно - это уже было известно. Если считать, что возбуждение, идущее по нерву, имеет электрическую природу, то, по-видимому, бессмысленно пытаться измерить его скорость - слишком малы расстояния. И все же нашелся человек, который сделал такую попытку: зто был друг Дюбуа-Реймона, замечательный ученый Герман Гельмгольц.

В 1850 г. Гельмгольц был профессором физиологии Кенигсберского университета. Там он и придумал несколько вариантов опытов для измерения скорости возбуждения. Один из вариантов опыта выглядел так. На вращающийся барабан была намотана закопченная бумага. Гельмгольц брал нервно-мышечный препарат и закреплял мышцу около барабана. К мышце прикреплялось перо, так что сокращение мышцы вызывало след на движущейся бумаге. Когда нерв раздражался, момент раздражения с помощью специального устройства отмечался на ленте. На той же бумажной ленте было видно, через какой промежуток времени отвечает сокращением мышца. Так можно было узнать время от момента раздражения нерва до начала сокращения мышцы. Но толку от этого было мало: ведь за это время возбуждениедолжно было дойти по нерву до мышцы, передать мышце сигнал к сокращению, после чего в мышце должен был развиться процесс сокращения.


 

Как разделить все эти времена? Гельмгольц придумал такой способ. Он раздражал нерв вторично, но в другом месте, например на расстоянии 5 см от первой точки раздражения. Теперь сокращение мышцы наступало немного позднее, считая от момента раздражения. Разница этих времен могла зависеть только от того, что возбуждение прошло лишние 5 см. Зная скорость вращения барабана, можно было определить время запаздывания, а так как расстояние между двумя точками раздражения нерва было известно, можно было определить и скорость распространения возбуждения по волокну.

Оказалось, что возбуждение распространяется по нерву со скоростью всего 30 м/с, т.е.в сто миллионов раз медленнее, чем электрический сигнал, и даже в десять раз медленнее, чем звук! Этот результат, с одной стороны, был сильным ударом по представлениям о мгновенно распространяющейся "жизненной силе", но, с другой стороны, поставил перед электробиологией новый сложный вопрос: чем же объясняется такое сильное отличие этой скорости от скорости распространения электрического сигнала в металлах и электролитах? Получается, что "животное электричество" не так-то просто поддается объяснению с помощью тех понятий, которые были выработаны для электричества "неживого", чисто физического. В связи с этим возобновились разговоры об особых свойствах "животного электричества", в то время как другие ученые высказывали сомнение об электрической природе распространения возбуждения по нервным волокнам.

 

"Волна возбуждения"

 

Это сомнение было развеяно учеными младшего поколения школы Дюбуа-Реймона, в дальнейшем ставшими главными героями науки о "животном электричестве", - Юлиусом Бернштейном и Людвигом Германом. Они сильно продвинули вперед изучение "белого пятна" в явлениях электробиологии - процесса возбуждения в нервах и мышцах.

Как вы помните, "уловить" электрические характеристики возбуждения очень трудно - сам Дюбуа не смог решить этой задачи, так как процессы возбуждения очень быстры, кратковременны. Поэтому с помощью даже очень высокочувствительных, но обладающих большой инерцией гальванометров, имевшихся тогда в распоряжении исследователей, можно было лишь с достоверностью обнаружить сам факт электрического ответа мышцы или нерва, но не проследить за изменениями его во времени. Однако Герман и Бернштейн успешно справились с этой очень трудной для того времени задачей. Мы не будем подробно описывать их многочисленные и остроумные ухищрения, а приведем лишь результаты исследований. Им удалось установить форму волны возбуждения и измерить скорость распространения этого электрического сигнала вдоль по мышце или нерву.

Обнаружилась картина, изображенная на рис.9: сначала возбуждение от раздражающих электродов подходит к первому регистрирующему электроду, и он становится отрицательно заряженным по отношению ко второму. Герман и Бернштейн проследили за движением импульса по волокну и даже - что очень важно - измерили скорость этого движения, т.е.скорость распространения возбуждения. А важно это потому, что скорость оказалась точь-в-точь равной той, которую за двадцать лет до того измерил Гельмгольц!

Подведем некоторые итоги. К концу XIX века в основном стараниями ученых школы Дюбуа-Реймона были открыты и исследованы основные электрофизиологические явленияпотенциалпокоя, который вначале называли током повреждения, потенциалдействия, который распространяется по волокну, а также были исследованы некоторые феноменологические законы раздражающего действия тока, например, было введено понятие рефрактерности.

Однако до объяснения этих явлений было еще далеко. Главная загадка состояла в том, откуда и как возникают потенциал покояи потенциал действия? Где та электростанция, тот генератор, которые их создают?

Несмотря на значительное развитие теории электричества и электротехники природу ПП и ПД не удавалось сколь-нибудь удовлетворительно объяснить. Электрохимия еще не имела достаточной теоретической базы, хотя изучение тока и началось с появления вольтова столба, т.е.электрических процессов на границе жидкости.

Порой даже создавалось впечатление, что электрические явления в живом организме нельзя свести к тем, которые встречаются в технических устройствах. Например, нервный импульс имел электрическую природу, но распространялся по нерву с необычайно малой скоростью, Масса накопленных фактов требовала создания объединяющей их теории.

 

 


Дата добавления: 2021-01-20; просмотров: 151; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!