Если в результате столкновения двух тел сохраняется кинетическая энергия, такой удар называется абсолютно упругим.

Урок: Столкновение тел. Абсолютно упругий и абсолютно неупругий удары. Решение задач

 

Для изучения строения вещества, так или иначе, используются различные столкновения. Например, для того, чтобы рассмотреть какой-то предмет, его облучают светом, или потоком электронов, и по рассеянию этого света, или потока электронов получают фотографию, или рентгеновский снимок, или изображение данного предмета в каком-либо физическом приборе. Таким образом, столкновение частиц – это то, что окружает нас и в быту, и в науке, и в технике, и в природе.

Например, при одном столкновении ядер свинца в детекторе ALICE Большого Адронного Коллайдера рождаются десятки тысяч частиц, по движению и распределению которых можно узнать о самых глубинных свойствах вещества. Рассмотрение процессов столкновения с помощью законов сохранения, о которых мы говорим, позволяет получать результаты, независимо от того, что происходит в момент столкновения. Мы не знаем, что происходит в момент столкновения двух ядер свинца, но мы знаем, какова будет энергия и импульс частиц, которые разлетаются после этих столкновений.

Сегодня мы рассмотрим взаимодействие тел в процессе столкновения, иными словами движение невзаимодействующих тел, которые меняют свое состояние только при соприкосновении, которое мы называем столкновением, или ударом.

При столкновении тел, в общем случае, кинетическая энергия сталкивающихся тел не обязана быть равной кинетической энергии разлетающихся тел. Действительно, при столкновении тела взаимодействуют друг с другом, воздействуя друг на друга и совершая работу. Эта работа и может привести к изменению кинетической энергии каждого из тел. Кроме того, работа, которую совершает первое тело над вторым, может оказаться неравной работе, которую второе тело совершает над первым. Это может привести к тому, что механическая энергия может перейти в тепло, электромагнитное излучение, или даже породить новые частицы.

Столкновения, при которых не сохраняется кинетическая энергия сталкивающихся тел, называют неупругими.

Среди всех возможных неупругих столкновений, есть один исключительный случай, когда сталкивающиеся тела в результате столкновения слипаются и дальше движутся как одно целое. Такой неупругий удар называют абсолютно неупругим (рис. 1).

а) б)

Рис. 1. Абсолютное неупругое столкновение

Рассмотрим пример абсолютно неупругого удара. Пусть пуля массой летела в горизонтальном направлении со скоростью и столкнулась с неподвижным ящиком с песком массой , подвешенным на нити. Пуля застряла в песке, и дальше ящик с пулей пришел в движение. В процессе удара пули и ящика внешние силы, действующие на эту систему, – это сила тяжести, направленная вертикально вниз, и сила натяжения нити, направленная вертикально вверх, если время удара пули было настолько мало, что нить не успела отклониться. Таким образом, можно считать, что импульс сил, действующих на тело во время удара, был равен нулю, что означает, что справедлив закон сохранения импульса:

.

Условие, что пуля застряла в ящике, и есть признак абсолютно неупругого удара. Проверим, что произошло с кинетической энергией в результате этого удара. Начальная кинетическая энергия пули:

,

конечная кинетическая энергия пули и ящика:

простая алгебра показывает нам, что в процессе удара кинетическая энергия изменилась:

.

Итак, начальная кинетическая энергия пули меньше конечной на некоторую положительную величину. Как же это произошло? В процессе удара между песком и пулей действовали силы сопротивления. Разность кинетических энергий пули до и после столкновения как раз и равны работе сил сопротивления. Другими словами, кинетическая энергия пули пошла на нагрев пули и песка.

Если в результате столкновения двух тел сохраняется кинетическая энергия, такой удар называется абсолютно упругим.

Примером абсолютно упругих ударов могут быть столкновения бильярдных шаров. Мы рассмотрим простейший случай такого столкновения – центральное столкновение.

Центральным называется столкновение, при котором скорость одного шара проходит через центр масс другого шара. (Рис. 2.)

Рис. 2. Центральный удар шаров

Пускай один шар покоится, а второй налетает на него с какой-то скоростью , которая, согласно нашему определению, проходит через центр второго шара. Если столкновение центральное и упругое, то при столкновении возникают силы упругости, действующие вдоль линии столкновения. Это приводит к изменению горизонтальной составляющей импульса первого шара, и к возникновению горизонтальной составляющей импульса второго шара. После удара второй шар получит импульс, направленный направо, а первый шар может двигаться как направо, так и налево – это будет зависеть от соотношения между массами шаров. В общем случае, рассмотрим ситуацию, когда массы шаров различны.

Закон сохранения импульса выполняется при любом столкновении шаров:

.

В случае абсолютно упругого удара, также выполняется закон сохранения энергии:

Получаем систему из двух уравнений с двумя неизвестными величинами. Решив ее, мы получим ответ.

Скорость первого шара после удара равна

,

заметим, что эта скорость может быть как положительной, так и отрицательной, в зависимости от того, масса какого из шаров больше. Кроме того, можно выделить случай, когда шары одинаковые. В этом случае после удара первый шар остановится. Скорость второго шара, как мы ранее отметили, получилась положительной при любом соотношении масс шаров:

.

Наконец, рассмотрим случай нецентрального удара в упрощенном виде – когда массы шаров равны. Тогда, из закона сохранения импульса мы можем записать:

А из того, что кинетическая энергия сохраняется:

Нецентральным будет удар, при котором скорость налетающего шара не будет проходить через центр неподвижного шара (рис. 3). Из закона сохранения импульса, видно, что скорости шаров составят параллелограмм. А из того, что сохраняется кинетическая энергия, видно, что это будет не параллелограмм, а квадрат.

Рис. 3. Нецентральный удар при одинаковых массах

Таким образом, при абсолютно упругом нецентральном ударе, когда массы шаров равны, они всегда разлетаются под прямым углом друг к другу.

 

Давайте разберём несколько задач

 

 

 

 

 

Задача1

 

Задача 2.

 

Задача 3

Условие

На какую высоту поднимется тело, подброшенное вертикально вверх, с начальной скоростью 20 м/с? При решении задачи не учитывается сопротивление воздуха.

Дано: V=20 м/c; h=?

Решение

Кинетическая энергия, полученная в броске, будет переходить постепенно в потенциальную энергию:

упрощаем это выражение до:

При упрошенных расчетах принято величину ускорения свободного падения (g) рассчитывать как 10 Н/кг.

Математически преобразуем формулу для нахождения h:

Ответ: высота подъема тела 20 метров.

 

Задача 4.

 Условие

Необходимо рассчитать жесткость пружины, если известно, что при растяжении ее на 20 см пружина приобрела потенциальную энергию упругодеформированного тела 20 Дж.

Дано: х=20 см=0,2 м; Ер=20 Дж; k=?

Решение

умножаем правую и левую часть на 2, для получения промежуточной формулы:

выражаем величину k:

проверим размерность величины, которую получили:

Ответ: жесткость пружины равна .

Задача №5

Условие

Спусковую пружину игрушечного пистолета сжали на 5 см, при вылете шарик массой 20 г приобрел скорость 2 м/с. Необходимо рассчитать, какова жесткость пружины.

Дано: х=5 см=0,05 м; m=20 г=0,02 кг; V=2 м/с; k=?

Решение

По закону сохранения энергии, потенциальная энергия упругодеформированной пружины перейдет в кинетическую энергию движения шарика:

упрощаем данное выражение:

выражаем величину k:

Ответ: жесткость пружины равна .

 

Тело свободно падает с высоты 5м. На какой высоте его кинетическая энергия в 6 раз больше потенциальной

Предполагаемый ответ учащихся:

 

 

 

Решить самостоятельно

 

Задание 3 № 401

Два тела движутся по взаимно перпендикулярным пересекающимся прямым, как показано на рисунке. Модуль импульса первого тела равен а второго тела равен Чему равен модуль импульса системы этих тел после их абсолютно неупругого удара? (Ответ дайте в кг·м/с.)

Задание 3 № 402

Система состоит из двух тел a и b. На рисунке стрелками в заданном масштабе указаны импульсы этих тел. Чему по модулю равен импульс всей системы? Ответ выразите в кг·м/с и округлите до десятых.

3.  

 4.

 

 


Дата добавления: 2020-12-22; просмотров: 74; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!