Массодинамические поля в околоземном пространстве



Аналогично случаю вращения одной электрически заряженной частицы относительно другой, например электрона вокруг протона, когда имеет место магнитное поле (поскольку ), при относительном вращении любых материальных объектов обладающих массой, например, планет вокруг Солнца, спутников вокруг планет и т.п., в окружающем пространстве генерируется массодинамическое поле. Аналогично, при вращении вокруг собственной оси материального объекта, состоящего из гравитационно взаимодействующих между собой частиц, в окружающем пространстве также возникает массодинамическое поле, поскольку для всех взаимодействующих внутри объекта материальных частиц в этом случае

Исходя из вышеизложенного, в любой произвольной точке вблизи поверхности Земли (рисунок 1), суммарное массодинамическое поле МДП(S ) складывается из:

Рисунок 1 - Картина массодинамических полей в окрестностях Земли

 

  1. массодинамического поля, генерируемого при вращении Земли вокруг своей оси (суточное вращение Земли) – МДП(З);
  2. массодинамического поля, генерируемого при вращении вокруг собственного центра массы системы Луна-Земля (месячное вращение Луны вокруг Земли) – МДП(Л-З);
  3. массодинамического поля, генерируемого при вращении вокруг собственного центра массы системы Солнце-Земля (годовое вращение Земли вокруг Солнца) – МДП(З-С);
  4. массодинамического поля, генерируемого при вращении Солнца вокруг своей оси – МДП(С);
  5. массодинамических полей, генерируемых при вращении планет, астероидов и комет Солнечной системы вокруг Солнца (вокруг центра массы системы) – МДП(П);
  6. массодинамического поля, генерируемого при вращении Солнечной системы вокруг центра массы Галактики и перемещения ее относительно других материальных объектов – МДП(Г).

На поверхности земли (вблизи поверхности), исходя из простого сопоставления масс объектов, относительных скоростей их перемещения Vот, и расстояний между ними, наибольший вклад в величину суммарного массодинамического поля МДП(S ) очевидно вносят МДП(З), МДП(Л-З), МДП(С) и МДП(З-С), а составляющие от остальных массодинамических полей многократно меньше и в дальнейшем анализе, на данном этапе, ими пренебрегаем.

Исходя из прямых аналогий, физическая картина силовых линий массодинамических полей (направление векторов напряженности массодинамического поля НМДП), генерируемых при относительном движении материальных объектов или отдельных частиц (гравитационный ток), будет аналогична картине силовых линий магнитных полей (векторов напряженности магнитного поля) при протекании электрического тока или относительном движении заряженных частиц. При этом, внутри проводника с током (электрическим или гравитационным) распределение напряженности Н будет качественно совпадать с плотностью этого тока j.

Любой вращающийся вокруг своей оси материальный объект (Земля, планета, Солнце, звезда, гироскоп, и т.д.) это система кольцевых гравитационных токов. Распределение плотности тока в нем определяется величиной JГ =r × w × R , т.е. плотность тока (при r = const) будет возрастать пропорционально расстоянию от оси вращения и, следовательно, линии равной плотности гравитационного тока (равной напряженности массодинамического поля) в центре Земли будут здесь параллельны оси вращения.

Изменение суммарного массодинамического поля МДП(S ) на поверхности земли были зафиксированы автором при проведении экспериментов с маятником [20].

Как показано в работе [20] на основе анализа результатов опытов по свободному падению тел, в северном полушарии вектор вертикальной составляющей напряженности массодинамического поля вращения Земли вокруг оси НВ(З) направлен снизу вверх, а вектор горизонтальной (меридиональной) составляющей НМ(З) – с севера на юг. Это определяет особенности протекания ряда процессов, обусловленных действием массодинамических сил.

  1. Физические процессы в природе, обусловленные проявлением массодинамических и массовариационных сил

Гироскопический эффект

Свойством сохранять неизменным положение своей оси обладает гироскоп. Исходя из положений теоретической механики, свойством сохранять направление оси вращения в пространстве должен обладать любой ротор с тремя степенями свободы, независимо от величины его угловой скорости и геометрических размеров. То есть, при равной величине главного момента количества движения, это свойство должно быть абсолютно одинаковым и для малого ротора – с малым моментом инерции и большой угловой скоростью, и для большого ротора – с малой угловой скоростью. Однако как показывает практика, это свойство характерно в значительно большей степени только для небольших высокоскоростных роторов, что необъяснимо с позиций чистой теоретической механики.

Объяснение этого, как и физической сущности самого “эффекта” сохранения направления оси вращения гироскопа и других его свойств, дано в работе [20].

Гироскоп это контур с кольцевым гравитационным током (потоком массы). Все эффекты при взаимодействии этого тока с внешним и собственным массодинамическим полем, исходя из прямой аналогии, будут того же характера и иметь те же закономерности, что и для контура с кольцевым электрическим током при взаимодействии с внешним и собственным магнитным полем.

Вращающийся ротор гироскопа генерирует собственное массодинамическое поле – МДП(р). Напряженность МДП(р) на поверхности гироскопа, при неизменной плотности материала ротора, пропорциональна его угловой скорости w Р и возрастает от центра к периферии.

Поскольку гироскоп находится под влиянием внешнего массодинамического поля МДП(S ), то характер его поведения будет зависеть как от величины и направления вектора напряженности МДП(S ), так и от соотношения внешнего и собственного массодинамических полей:

  1. С ростом w Р возрастает напряженность НР массодинамического поля ротора и уменьшается неоднородность результирующего массодинамического поля по его поверхности в плоскости нормальной оси вращения, обусловленная наложением суммарного внешнего массодинамического поля − МДП(S ).
  2. С уменьшением диаметра ротора уменьшается плечо сил, обусловленных неоднородность результирующего массодинамического поля на его поверхности.
  3. С увеличением расстояния местонахождения гироскопа от поверхности земли уменьшается напряженность массодинамического поля Земли − МДП(З) и, следовательно, напряженность МДП(S ), что уменьшает неоднородность результирующего массодинамического поля на поверхности ротора.

Как следует из вышеизложенного, вследствие наличия внешнего массодинамического поля в любой точке материального пространства, абсолютная неизменность направления оси ротора гироскопа невозможна. Гироскопический компас невозможен вследствие наличия и изменения во времени МДП(S ). При этом:

  1. Устойчивость положения оси гироскопа возрастает с увеличением его угловой скорости и уменьшением диаметра ротора, что подтверждается практикой.
  2. Устойчивость положения оси гироскопа возрастает с его удалением от поверхности земли, например в околоземное космическое пространство.

Воздействие на гироскоп любой внешней силы FП следует рассматривать как появление массодвижущей силы (МДС, см. таблицу 1), приводящей к возникновению ускорения и началу перемещения массы в направлении действия силы. Это означает возникновение гравитационного тока iП в контуре, проходящем через ось ротора и вектор силы FП и, соответственно, обусловленного им массодинамического поля МДП(п) напряженностью НП. То есть, механическую силу можно заменить эквивалентным контуром с гравитационным током (рисунок 2), создающим массодинамическое поля соответствующей напряженности.

В случае магнитного поля, давление создаваемое на проводник пропорционально разности квадратов напряженности на противоположных его сторонах

РМ ~ Н12 – Н22 .

Исходя из подобия магнитного и массодинамического поля, аналогичная зависимость будет и для давления массодинамического поля.

Рисунок 2

 

В результате наложения массодинамического поля вращения ротора МДП(р) и МДП(п) происходит изменение напряженности суммарного массодинамического поля на поверхности ротора НСР± НП Следствием этого является несимметричность (зеркальность) эпюры напряженности результирующего массодинамического поля на обеих поверхностях ротора относительно линии пересечения токовых контуров iП и iР (рисунок 2).

Следствием этого является разница давлений со стороны массодинамического поля на указанные зоны ротора. Это приводит к появлению момента сил массодинамических сил на ротор относительно линии пересечения токовых контуров, приводящего к повороту плоскости вращения ротора вокруг этой линии.

В этом случае наблюдается тот же эффект, что имеет место при взаимодействии контуров с электрическим током: поворот контура с электрическим током наблюдался автором при магнитно-импульсной штамповке плоских заготовок двухсторонним воздействием давлений импульсных магнитных полей, где роль поперечного токового контура выполняли токоподводы к обмоткам верхнего и нижнего плоских индукторов.

Поскольку начинается поворот ротора в плоскости перпендикулярной плоскости действия силы FП, то это в свою очередь приводит к возникновению новой массодинамической силы (токового контура) в плоскости перпендикулярной плоскости действия первоначальной внешней силы. При этом вновь возникающий момент массодинамических сил будет направлен противоположно моменту от действия внешней механической силы FП, т.е. будет препятствовать отклонению оси вращения гироскопа. Это обуславливает физическую сущность свойства гироскопа сохранять направления оси вращения.

Для изменение направления оси гироскопа необходим импульс внешней механической силы (возбуждение гравитационного тока) или воздействие внешнего массодинамического поля.

С другой стороны, после окончания действия внешней силы, отклонения оси гироскопа и возникновения массодинамической силы в новой плоскости, весь процесс генерации массодинамических сил непрерывно повторяется при постоянном изменении (повороте) плоскости действия массодинмических сил, а, следовательно, возникает вращение оси ротора. Следствием этого и является прецессия гироскопа

Таким образом, прецессия гироскопа является результатом действия массодинамических сил (полей) и будет происходить после воздействия импульса механической силы независимо от наличия гравитационных сил (например, момента силы веса в условиях невесомости), что рассматривается в теоретической механике как причина регулярной прецессии.

Физическая сущность сопротивления гироскопа повороту его оси и причина возникновения прецессии это индуцирование массодинамических сил в результате взаимодействия собственного массодинамического поля вращающегося ротора с массодинамическим полем гравитационного тока, возбуждаемого при воздействии внешней механической силы.


Дата добавления: 2020-12-22; просмотров: 178; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!