Некоторые принципы отбора математических гипотез.



Чтобы убедиться в обоснованности гипотезы, необходимо, как уже отмечалось, получить из нее следствия и проверить их на опыте. Существуют ли какие-либо другие приемы и принципы, с помощью которых можно выдвигать или, по крайней мере, отбирать гипотезы, отказываться от гипотез явно ненадежных? Поскольку гипотеза логически не вытекает из данных опыта, то бессмысленно пытаться искать какие-то логические каноны, с помощью которых можно безошибочно создавать новые гипотезы в науке. 3адача логики здесь чисто критическая. Формирование новых гипотез — творческий процесс, его нельзя уложить в заданные схемы. Тем не менее, было бы ошибкой рассматривать этот процесс как иррациональный.

Обобщая многовековой опыт научного познания, исследователи накопили большой ценный материал, относящийся как к психологии, так и методологии научного познания. В различных науках этот опыт выступает в виде некоторых предварительных, эвристических принципов, с которыми ученые так или иначе должны считаться при выборе гипотез. Поскольку математические гипотезы наибольшее применение находят в теоретической физике, то в дальнейшем мы будем говорить о принципах отбора гипотез именно в данной науке.

Многие исследователи отмечают, что выдвижение математических гипотез в теоретической физике в известной мере регулируется некоторыми принципами физического и методологического характера, которые ограничивают свободу выбора. К числу таких принципов отбора обычно относят законы сохранения (заряда, массы, энергии и т.д.), принцип ковариантности уравнений при определенных преобразованиях, в особенности принцип соответствия. Роль всех этих принципов достаточно убедительно продемонстрирована в процессе создания основных теорий современной физики.

Руководствуясь идеей о единстве материи и взаимосвязи различных форм ее существования, физик, естественно, будет рассчитывать, что такие фундаментальные законы и принципы, как законы сохранения и принцип ковариантности уравнений, будут иметь место и во вновь создаваемой теории. Что касается принципа соответствия, то его эвристическое значение достаточно ясно.

 

Действительно, если существует преемственность в развитии теории, то при обобщении и развитии ее понятий и принципов вполне разумно требовать, чтобы уравнения старой теории могли быть получены из новой в качестве некоторого предельного или частного случая.

Такое соответствие действительно обнаруживается между классической механикой и теорией относительности, с одной стороны, классической и квантовой механикой — с другой. Это обстоятельство в значительной мере учитывалось творцами новых физических теорий, хотя в явном виде сам принцип соответствия был впервые сформулирован лишь Н. Бором.

Кроме чисто физических принципов отбора подходящих математических гипотез существуют и другие эвристические принципы, которые с успехом могут быть использованы при отборе любых научных гипотез. Отметим здесь только принципы простоты и математического изящества уравнений, с помощью которых выражаются те или иные гипотезы. П. Дирак настолько высоко ценит последний принцип, что считает математическую красоту (важнейшим регулятивным критерием отбора гипотез и теорий. Требование, чтобы гипотеза могла быть исследована существующими логико-математическими методами, настолько сильно довлеет над исследователем, что часто он предпочитает строить менее сильные гипотезы, лишь бы получить возможность применить к ним известный математический аппарат. Без этого оказывается невозможным получить из гипотезы следствия, которые можно было проверить на опыте.

Когда говорят о простоте гипотез, то имеют в виду прежде всего не онтологический, а теоретико-познавательный и методологический аспекты. Речь здесь должна идти скорее о простоте знаковых, или семиотических, систем, с помощью которых выражается та или иная гипотеза. Само понятие простоты можно рассматривать с трех точек зрения. Синтаксическое представление о простоте связано со стройностью, согласованностью различных компонентов гипотезы. При прочих равных условиях мы всегда предпочтем выбрать гипотезу, которая синтаксически будет проще, так как ее легче исследовать существующими логико-математическими методами.

Семантическая концепция простоты существенным образом зависит от возможности эмпирической интерпретации гипотезы. Прагматическая простота связана с практическими соображениями по разработке и проверке гипотезы. Как правило, ученый предпочитает иметь дело с гипотезой, которая легче поддается математической разработке, так как в этом случае из нее можно получить точные количественные следствия. Учитывая необходимость экспериментальной проверки гипотез, ученый часто выбирает ту из них, проверку следствий из которой можно осуществить с помощью более простого эксперимента.

В практической работе исследователь нередко может столкнуться с ситуацией, в которой соображения простоты одного вида могут противоречить соображениям простоты другого вида. В этих, как и во всех других случаях, основным регулятором отбора будут выступать соображения, касающиеся основной функции гипотезы: чтобы она могла объяснить те опыты и наблюдения, из анализа и обобщения которых возникла. Никакая простота или ложно понятая «экономия мышления» в духе Э. Маха сама по себе не в состоянии гарантировать надежность гипотезы.

 

 

 

Заключение

Метод моделирования является крайне важным не только для процессов жизнедеятельность, но и для науки в целом. Можно сделать вывод, что метод моделирования является одним из самых наглядных, надежных и объективных методов научного исследования. Данный метод позволяет максимально объективно и всесторонне анализировать многие процессы и явления в большинстве направлений науки. В данном реферате была раскрыта сущность данного метода, приведены его цели, перечислены возможные критерии создаваемых моделей.

Также в данной работе был описан метод математической гипотезы, который характерен преимущественно для точных дисциплин с большим арсеналом математических средств. Данный метод состоит в переносе закономерности, выраженной математическим выражением, из известной области в неизвестную путем видоизменения уравнения. Это позволяет вывести целый ряд следствий, которые можно проверить экспериментально.

На мой взгляд, оба этих метода научного познания чрезвычайно важны для научных исследований в разных областях. Однако метод моделирования может быть применен в более широкой области направлений, как научных, так и нет. Можно сказать, что это базовый метод, без которого невозможно обойтись во многих дисциплинах. Также преимуществом метода моделирования является наглядность и возможность на основе созданных моделей прогнозировать конечный результат. В свою очередь, метод математической гипотезы применяется в основном в точных науках. Наибольшей популярностью данный метод пользуется в области физики. Но основным преимуществом метода математической гипотезы является то, что он приводит к появлению множества новых концепций и закономерностей в неизвестной области, к которой данный метод применяется. Появление новых теорий, которые можно проверить эмпирическим путем, является фундаментом для новых открытий. Данный факт очень важен для развития науки.


Дата добавления: 2020-12-22; просмотров: 92; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!