Зависимость сопротивления проводника от температуры.

Тема: Электрический ток в полупроводниках. Применение полупроводниковых приборов.

Группа: ПК-261

Дата: 07.11.2020 г.

Студенты должны знать: природу электрического тока в полупроводниках, виды проводимости полупроводников, зависимость проводимости полупроводников от температуры и освещенности

Студенты должны уметь: определять характер проводимости в полупроводнике с разными примесями, решать задачи по теме электрический ток в полупроводниках.

 

План

1. Электрическая проводимость различных веществ.

2. Зависимость сопротивления проводника от температуры.

3. Сверхпроводимость.

 

Электрическая проводимость различных веществ.

Удельные сопротивления полупроводников при комнатной температуре имеют значения, которые находятся в широком интервале, т. е. от 10-3 до 107 Ом·м, и занимают промежуточное положение между металлами и диэлектриками.

 Полупроводники - вещества, удельное сопротивление которых очень быстро убывает с повышением температуры.

К полупроводникам относятся многие химические элементы (бор, кремний, германий, фосфор, мышьяк, селен, теллур и др.), огромное количество минералов, сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира - полупроводники.

При достаточно низких температурах и отсутствии внешних воздействий (например, освещения или нагрев) полупроводники не проводят электрический ток: при этих условиях все электроны в полупроводниках являются связанными.

Однако связь электронов со своими атомами в полупроводниках не такая крепкая, как в диэлектриках. И в случае повышения температуры, а так же при ярком освещении некоторые электроны отрываются от своих атомов и становятся свободными зарядами, то есть могут перемещаться по всему образцу. Благодаря этому в полупроводниках появляются отрицательные носители заряда - свободные электроны.

Проводимость полупроводника, обусловленная движением электронов, называют электронной. Когда электрон отрывается от атома, положительный заряд этого атома становится некомпенсированным, то есть в этом месте появляется лишний положительный заряд. Этот положительный заряд называют «дыркой». Атом, вблизи которого образовалась дырка, может отобрать связанный электрон у соседнего атома, при этом дырка переместится до соседнего атома, а атом, в свою очередь, может «передать» дырку дальше.

Такое перемещение связанных электронов можно рассматривать как перемещение дырок, то есть положительных зарядов.

Проводимость полупроводника, обусловленная движением дырок, называют дырочной. Таким образом, различие дырочной проводимости от электронной заключается в том, что электронная проводимость обусловлена перемещением в полупроводниках свободных электронов, а дырочная - перемещением связанных электронов.

В чистом полупроводнике (без примесей) электрический ток создает одинаковое количество свободных электронов и дырок. Такую проводимость называют собственной проводимостью полупроводников. Если добавить в чистый расплавленный кремний незначительное количество мышьяка (примерно 10-5 %), после твердения образуется обычная кристаллическая решетка кремния, но в некоторых узлах решетки вместо атомов кремния будут находиться атомы мышьяка. Мышьяк, как известно, пятивалентный элемент. Четырехвалетные электроны образуют парные электронные связи с соседними атомами кремния. Пятом же валентному электрону связи не хватит, при этом он будет слабо связан с атомом мышьяка, который легко становится свободным. В результате каждый атом примеси даст один свободный электрон.

Примеси, атомы которых легко отдают электроны, называются донорными. Электроны из атомов кремния могут становиться свободными, образуя дыру, поэтому в кристалле могут одновременно существовать и свободные электроны и дырки. Однако свободных электронов во много раз будет больше, чем дырок. Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n -типа. Если в кремний добавить незначительное количество трехвалентного индия, то характер проводимости полупроводника изменится. Поскольку индий имеет три валентных электрона, то он может установить ковалентная связь только с тремя соседними атомами. Для установки связи с четвертым атомом электрона не хватит. Индий «одолжит» электрон у соседних атомов, в результате каждый атом индия образует одно вакантное место - дырку.

Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными. В случае акцепторной примеси основными носителями заряда при прохождении электрического тока через полупроводник есть дыры. Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р-типа.

Зависимость сопротивления проводника от температуры.

Практически все полупроводники содержат и донорные, и акцепторные примеси. Тип проводимости полупроводника определяет примесь с более высокой концентрацией носителей заряда - электронов и дырок.

Следовательно, через границу раздела полупроводников n -типа и р-типа электрический ток идет только в одном направлении - от полупроводника p -типа к полупроводнику n-типа. Это используют в устройствах, которые называют диодами.

Полупроводниковые диоды используют для выпрямления переменного тока направлении (такой ток называют переменным), а также для изготовления светодиодов. Полупроводниковые выпрямители имеют высокую надежность и длительный срок использования. Широко применяют полупроводниковые диоды в радиотехнических устройствах: радиоприемниках, видеомагнитофонах, телевизорах, компьютерах.

Еще более важным применением полупроводников стал транзистор. Он состоит из трех слоев полупроводников: по краям расположены полупроводники одного типа, а между ними - тонкий слой полупроводника другого типа. Широкое применение транзисторов обусловлено тем, что с их помощью можно усиливать электрические сигналы. Поэтому транзистор стал основным элементом многих полупроводниковых приборов.

 Полупроводниковые диоды и транзисторы являются «кирпичиками» очень сложных устройств, которые называют интегральными микросхемами. Микросхемы «работают» сегодня в компьютерах и телевизорах, в мобильных телефонах и искусственных спутниках, в автомобилях, самолетах и даже в стиральных машинах. Интегральную схему изготавливают на пластинке кремния. Размер пластинки - от миллиметра до сантиметра, причем на одной такой пластинке может размещаться до миллиона компонентов - крошечных диодов, транзисторов, резисторов и т. др.

 Важными преимуществами интегральных схем является высокое быстродействие и надежность, а также низкая стоимость. Именно благодаря этому на основе интегральных схем и удалось создать сложные, но доступные многим приборы, компьютеры и предметы современной бытовой техники.

 

Контрольные вопросы:

1. Какие вещества можно отнести к полупроводниковым?

2. Движением каких заряженных частиц создается ток в полупроводниках?

3. Почему сопротивление полупроводников очень сильно зависит от наличия примесей?

4. Как образуется p-n - переход? Какое свойство имеет p-n - переход?

5. Почему свободные носители зарядов не могут пройти сквозь p -n -переход полупроводника?

ВНИМАНИЕ!!!

Уважаемые студенты, на вопросы необходимо ответить в рабочей тетради (сфотографировать) или в формате Документа Word. Отправлять для проверки в личные сообщения на страницу ВКонтакте: https://vk.com/:  https://vk.com/id591468583.

 

Преподаватель: Потемкина Татьяна Пантелеймоновна.

 


Дата добавления: 2020-12-22; просмотров: 67; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!