Усилители электрических сигналов



Лекция по Электронике

Гр. 2892-12 и 2802-22

Элементная база современных электронных устройств

Промышленная электроника – наука о применении электронных приборов и устройств в промышленности. В промышленной электронике можно выделить три области: - информационную электронику (ИЭ); - энергетическую электронику (ЭЭ); - электронную технологию (ЭТ).

Одним из главных направлений развития полупроводниковой электроники в последние десятилетия являлись интегральная микроэлектроника. В последние годы широкое применение получили полупроводниковые интегральные микросхемы (ИС). Микросхема – микроминиатюрный функциональный узел электронной аппаратуры, в котором элементы и соединительные провода изготавливаются в едином технологическом цикле на поверхности или в объеме полупроводника и имеют общую герметическую оболочку. В больших интегральных схемах (БИС) количество элементов (резисторов, диодов, конденсаторов, транзисторов и т.д.) достигает нескольких сотен тысяч, а их минимальные размеры составляют 2…3 мкм. Быстродействие БИС привело к созданию микропроцессоров и микрокомпьютеров. В последнее время широкое развитие получил новый раздел науки и техники – оптоэлектроника. Физическую основу оптоэлектроники составляют процессы преобразования электрических сигналов в оптические и обратно, а также процессы распространения излучения в различных средах. Оптоэлектроника открывает реальные пути преодоления противоречия между интегральной полупроводниковой электроникой и традиционными электрорадиокомпонентами (резисторы переменные, кабели, разъемы, ЭЛТ, лампы накаливания и т.д.). Преимуществом оптоэлектроники являются неисчерпаемые возможности повышения рабочих частот и использование принципа параллельной обработки информации.

электроны и положительные дырки.

Полупроводниковые диоды Полупроводниковый диод (ПД) – прибор с одним p − n переходом и двумя выводами. Он хорошо пропускает ток одного направления и плохо пропускает ток противоположного направления. Эти токи и соответствующие им напряжения между выводами полупроводникового диода называются прямыми I пр и обратными I обр токами, прямыми U пр и обратными U обр напряжениями.  Прямое сопротивление ПД составляет обычно не выше нескольких десятков Ом, а обратное сопротивление не ниже нескольких сотен кОм.

Стабилитрон. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Условное графическое обозначение стабилитрона

Стабилитрон стабилизирует напряжение.

В стабилитронах может иметь место и туннельный, и лавинный, и смешанный пробой в зависимости от удельного сопротивления базы.

Транзисторы (рис.а,б). Общие сведения. Транзисторы (Т) – полупроводниковые приборы, служащие для усиления мощности электрических сигналов. По принципу действия транзисторы делятся на биполярные и полевые (униполярные).

Рис.11в

Структура биполярного транзистора типов p − n − p (а), n − p − n (б) и их условное обозначение

Полевой транзисторов показана на рис. а,б

Структура (а) и условное обозначение полевого транзистора с каналом p –типа

.

 Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором

Принципы управления параметрами электронного активного элемента, заложенные в полевых транзисторах, могут быть реализованы в более сложных электронных устройствах. К таким устройствам можно отнести ячейку памяти на основе полевого транзистора с изолированным затвором (флэш-память). Устройства флэш-памяти являются современными быстродействующими программируемыми постоянными запоминающими устройствами (ППЗУ) с электрической записью и электрическим стиранием информации (ЭСП-ПЗУ). Эти устройства являются энергонезависимыми, так как информация не стирается при отключении питания, выдерживают не менее 100 000 циклов записи/стирания. Одной из разновидностей приборов, реализующих принципы полевых транзисторов, являются полупроводниковые приборы с зарядовой связью (ПЗС). Приборы с зарядовой связью используются: в запоминающих устройствах ЭВМ; в устройствах преобразования световых (оптических) сигналов в электрические.

Тиристоры. Тиристорами называют полупроводниковые приборы с двумя устойчивыми режимами работы (включен, выключен), имеющие три или более p-n–переходов.

Тиристор по принципу действия – прибор ключевого типа. Во включенном состоянии он подобен замкнутому ключу, а в выключенном – разомкнутому ключу. Те тиристоры, которые не имеют специальных электродов для подачи сигналов с целью изменения состояния, а имеют только два силовых электрода (анод и катод), называют неуправляемыми, или диодными, тиристорами (динисторами). Приборы с управляющими электродами называют управляемыми тиристорами, или просто тиристорами,

ток в их течет только в одном направлении. Условное графическое обозначение

 

Структурная схема тиристора

Оптоэлектронные приборы.

Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение. На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары). Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус. Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор. Основные достоинства оптоэлектронных приборов высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот; полная гальваническая развязка источника и приемника излучения; отсутствие влияния приемника излучения на источник (однонаправленность потока информации); невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность)

Излучающий диод (светодиод) Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом. 

Фоторезистор. Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра.

Фотодиод. Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Оптрон (оптопара). Оптрон – полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенных в одном корпусе и связанные между собой оптически, электрически и одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор. В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107…108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что обусловливает широкую применимость резистивных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие – 0,01…1с. В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей – тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5…50 мкс.

Оптопара : светодиод-фотодиод

Фототранзистор и фототиристор Выходные характеристики фототранзистора подобны выходным характеристикам обычного биполярного транзистора, в котором положение характеристик определяется не током базы, а уровнем освещенности (или величиной светового потока). Свойства фототиристора подобны свойствам обычного тиристора, однако с той лишь особенностью, что включение тиристора осуществляется не с помощью импульса тока управления, а с помощью светового импульса.

Источники вторичного питания

Наиболее часто источники постоянного напряжения получают путем преобразования синусоидального (переменного) напряжения в постоянное напряжение.

Вторичные источники питания предназначены для получения напряжения, необходимого для непосредственного питания электронных и других устройств. На рис. приведена структурная схема источника питания .

Устройства, осуществляющие такое преобразование, называются выпрямителями.

Для уменьшения веса и габаритов трансформатора и сглаживающего фильтра, работающих на частоте 50 Гц, используют источник питания с преобразователем частоты.

Выпрямители построенные по схеме:

 однополупериодные. Часто ее называют однофазной однотактной, т.к. источник переменной ЭДС является однофазным и ток проходит через него в одном направлении один раз за период (один такт за период).

Двухполупериодный выпрямитель со средней точкой представляет собой параллельное соединение двух однополупериодных выпрямителей (рис.а,б). Диоды схемы проводят ток поочередно, каждый в течение полупериода.

Двухполупериодный мостовой выпрямитель (рисунок 12г ). Он состоит из трансформатора Тр и четырех диодов Д1, Д2, Д3, Д4 , подключенных к вторичной обмотке трансформатора по мостовой схеме. К одной из диагоналей моста подсоединяется обмотка , а к другой – нагрузочный резистор Rн.

 Каждая пара диодов Д1, Д3 и Д2, Д 4 работает поочередно.

Схема (а) и временные диаграммы напряжений мостового двухполупериодного выпрямителя

Такой выпрямитель характеризуется высокими технико-экономическими показателями и широко используется на практике. Часто все четыре диода выпрямителя помещают в один корпус.

Схема трехфазного однополупериодного выпрямителя. В ее состав входят трехфазный трансформатор, три диода и сопротивление нагрузки Rн. Каждая фаза вторичной обмотки трансформатора включена на общую нагрузку и соответствующий диод. Поэтому каждый диод открывается во время положительной полуволны своей фазы. Огибающая выпрямленного напряжения представляет три пульсации на интервале одного периода входного напряжения, т.е. m = 3

Более эффективна мостовая схема трехфазного выпрямителя. В этой схеме каждая пара диодов входит в состав двух мостов. Поэтому шесть диодов образуют три мостовые схемы для трех фаз. Огибающая выпрямленного напряжения содержит шесть пульсаций на интервале одного периода, т.е. m = 6.

Сглаживающие фильтры .

Выпрямленное напряжение имеет существенные пульсации, поэтому широко используют сглаживающие фильтры – устройства, уменьшающие эти пульсации. Важнейшим параметром сглаживающего фильтра является коэффициент сглаживания S. По определению S=КПВХПВЫХ, причем КПВХ и КПВЫХ определяют как коэффициенты пульсаций на входе и выходе фильтра соответственно.

В качестве фильтров применяются индуктивности и емкости.

Простейшим фильтром является емкостной фильтр (С-фильтр).  Емкостной фильтр подключается параллельно нагрузке (рис.а). ( индуктивный фильтр подключается последовательно с нагрузкой).

Рис.12д

На практике используют также следующие фильтров (рис.): индуктивно-емкостной или Г-образный LC-фильтр (а), Г-образный RC-фильтр (б), П-образный LCфильтр (в), П-образный RC-фильтр (г).

Обычно Г- и П-образные RC-фильтры применяются только в маломощных схемах, так как они потребляют значительную долю энергии. На практике в силовых цепях применяются другие, более сложные фильтры.

Стабилизаторы напряжения.

Различают параметрические и компенсационные стабилизаторы.

Для примера применения стабилитрона обратимся к схеме так называемого параметрического стабилизатора напряжения.

Легко заметить, что если напряжение uвх настолько велико, что стабилитрон находится в режиме пробоя, то изменения этого напряжения практически не вызывают изменения напряжения uвых. При изменении напряжения uвх изменяется только ток i, а также напряжение uR = i R.×

Усилители электрических сигналов

Усилитель – это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем, мощность, требующаяся для управления, намного меньше мощности, отдаваемой в нагрузку, а форма входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают.

Классификация. Все усилители можно классифицировать по следующим признакам: по частоте усиливаемого сигнала: усилители низкой частоты (УНЧ) для усиления сигналов с частотой от 10 Гц до 100 кГц; широкополосные усилители, усиливающие сигналы от 1 до 100 МГц; избирательные усилители, усиливающие сигналы узкой полосы частот; по роду усиливаемого сигнала: усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от 0 Гц и выше; усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля; по функциональному назначению: усилители напряжения, усилители тока и усилители мощности (в зависимости от того, какой из параметров усиливается усилителем).


Дата добавления: 2020-12-22; просмотров: 81; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!