Использование закона статики в спорте

Брянский филиал Национального государственного Университета физической культуры, спорта и здоровья имени П.Ф. Лесгафта, Санкт-Петербург

(БФ НГУ им. П.Ф. Лесгафта, Санкт-Петербург)

 

КОНТРОЛЬНАЯ РАБОТА

 

По дисциплине

 

«Физика»

 

 

Студента отделения

Заочного обучения (ОЗО)

II курса, 21-АУЗ группы

Головачёв В.В.

 

Проверила преподаватель: Юрченко Н.И.

 

Брянск 2016

Содержание

 

1. Статика. Устойчивость. Виды равновесия……………………………3

2. Использование закона статики в спорте………………………………8

Список литературы………………………………………………………17

 

Статика. Устойчивость. Виды равновесия

Статикой называется раздел механики, изучающий условия равновесия тел. Из второго закона динамики следует, что если геометрическая сумма всех внешних сил, приложенных к невращающемуся телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс. Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

 

 

Рисунок 1. Равновесие твердого тела под действием трех сил. При вычислении равнодействующей все силы приведены к одной точке C.

На рис. 1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке. Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил. Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения. Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы. Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 2). Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

M1 + M2 + ... = 0.

 

В Международной системе единиц (СИ) моменты сил измеряются в ньютон-метрах (Н∙м).

Рисунок 2. Силы, действующие на рычаг, и их моменты. M1 = F1 · d1 > 0; M2 = – F2 · d2 < 0. При равновесии M1 + M2 = 0.

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов. Оба эти условия не являются достаточными для покоя.

Рисунок 3. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю.

 

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают устойчивые и неустойчивые состояния равновесия. Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние. При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в безразличном состоянии равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 4).

Рисунок 4. Различные типы равновесия шара на опоре. (1) – безразличное равновесие, (2) – неустойчивое равновесие, (3) – устойчивое равновесие.

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 5).

Рисунок 5. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C – центр массы диска; – сила тяжести; – упругая сила оси; d – плечо.

Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, то есть внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м. Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Рисунок 6. Падающая Пизанская башня. Точка C – центр масс, точка O – центр основания башни, CC' – вертикаль, проходящая через центр масс.

 

 

Использование закона статики в спорте

 

На человека в процессе двигательной деятельности действуют статические и динамические силы, сочетание которых может вывести его из состояния равновесия.

Например, задача единоборца состоит в том, чтобы за счет выбора оптимальной стойки, определения дистанции, использования наиболее рационального в сложившейся ситуации двигательного действия обеспечить собственную устойчивость и, наоборот, вынудить противника потерять равновесие.

Поэтому в условиях боя такие понятия, как устойчивость и равновесие, играют исключительно важную роль.

Устойчивость — это способность бойца надежно сохранять положение равновесия без опрокидывания (падения) при внешнем силовом воздействии, возникающем при контакте с соперником или с окружающей средой.

Для количественной и качественной оценки устойчивости применяют различные критерии, наиболее приемлемые для конкретных случаев ее проявления, а именно:

— углы устойчивости;

— коэффициенты устойчивости;

— предельные скорости движения.

Различают статическую и динамическую устойчивость.

Статическая устойчивость человека — это устойчивость при отсутствии динамических сил (центробежных или сил инерции).

При статическом (медленном) наклоне твердого тела его опрокидывание происходит относительно некоторой линии, называемой линией опрокидывания. При оценке устойчивости человека как твердого тела (рис. 1а) такими линиями являются линии а—b и е—f (во фронтальной плоскости) и линии а—f и b—е (в сагиттальной плоскости).

Расстояния между линиями опрокидывания (d, d1) определяют опорную базу тела в данной плоскости.

Площадь аbеfа является опорной базовой площадью.

Устойчивость человека в зависимости от схемы действующих сил оценивается в одной из основных плоскостей тела — фронтальной или сагиттальной.

Итак, при отсутствии внешних сил устойчивость определяется предельным углом наклона тела, так называемым углом статической устойчивости α.

Это угол между вектором силы тяжести G и линией, проходящей из ЦМ через линию опрокидывания а—b (на рисунке 1б она проектируется в точку О).

Угол устойчивости α определяется из геометрических построений:

tgα =0,5d/γцм,

откуда α = arctg (0,5d /γцм,),

где γцм — положение ЦМ человека относительно опорной поверхности.

Статическая устойчивость человека тем выше, чем больше угол α. Следовательно, для повышения статической устойчивости необходимо увеличивать опорную базу d и понижать положение ЦМ.

Так, например, в любом поединке это есть главное условие для принятия стойки — исходного положения (рис. 2).

Выбор стойки диктуется не только требованиями обеспечения первоначальной статической устойчивости, но и возможностью реагирования на изменение внешнего воздействия.

Понятно, что стоящий на выпрямленных ногах человек может, сохраняя вертикальное положение позвоночника, перемещать ЦМ только вниз.

Человек, который, согнув колени, присел, оставляя позвоночник в вертикальном положении, получает дополнительные преимущества. Он может теперь перемещать свой ЦМ не только вниз, но и вверх. Эта на первый взгляд незначительная деталь имеет существенное значение для повышения ответной реакции на действия противника.

Угол статической устойчивости изменяется в процессе двигательного действия. Так, например, если боец, не меняя опорной базы, согнет одну ногу, одновременно выпрямив другую (рис. 3), то произойдет смещение ЦМ на некоторую величину е.

Угол α определяется как α = arctg [(0,5d ± e)/ γцм].
Знак «плюс-минус» в формуле означает, что угол α уменьшается относительно линии опрокидывания а—b (точка О), но увеличивается относительно линии е—f (точка О1). Следовательно, устойчивость поддается контролю и управлению.

Однако в общем случае на спортсмена, помимо силы тяжести О, в основных плоскостях тела действуют внешние силы (силы воздействия со стороны соперника или окружающей среды).

Потеря устойчивости в сагиттальной плоскости из-за меньшей опорной базы d1 наиболее вероятна, а значит, более опасна.

Выведение из состояния равновесия

Существует множество способов выведения противника из состояния равновесия.

Равновесие тела сохраняется до тех пор, пока проекция ЦМ (на рис. 4 — точка С) не выходит за пределы площади опорной базы abefa. Удержание ее в этих пределах может быть осуществлено путем маневрирования («перешагивания» в стороны, вперед-назад), то есть изменения конфигурации и смещения опорной площади.

Итак, задача выведения человека из равновесия сводится к смещению его ЦМ за границы площади опоры.

В качестве примера приведем лишь один вариант выведения из равновесия, а именно: создание опрокидывающего момента.

Пусть сила тяжести G создает относительно линии опрокидывания аb (точка О1 на рис. 5) момент устойчивости Муст = Gа.

Достаточный для его преодоления опрокидывающий момент М1 можно создать незначительной по величине силой Р1, приложенной на относительно большом плече с. Но в этом случае возникает необходимость «фиксировать» линию опрокидывания (иначе противник легко защищается, переступив ногой и отодвигая линию опрокидывания). Если приложить силу Р2, направив ее не только в сторону, но и вниз, то на плече b она создаст опрокидывающий момент М2 = Р2b.

Приседая, не только добавляют свою массу (то есть прикладывают дополнительную инерционную силу F = ma), но и лишают противника возможности защищаться (переступив ногой, сместить ЦМ и отодвинуть линию опрокидывания). Одновременно можно поменять направление атаки, переведя ее из фронтальной плоскости ХОY в сагиттальную YOZ. Для этого достаточно сдвинуть точку приложения силы Р2 «из плоскости» в сторону задней линии опрокидывания. Это резко уменьшает опорную базу, и потеря устойчивости катастрофически неизбежна.

Биомеханические аспекты устойчивости

Всякое положение биологического тела является процессом колебательного характера. Точка общего центра тяжести (ОЦТ) тела при статическом положении испытывает колебания в диапазоне 2–3 см вследствие кровообращения, лимфотока, дыхания, мышечного тремора и т.д. биологического тела; это управляемый процесс. Человек может изменять устойчивость своего тела за счёт варьирования факторов устойчивости, которыми являются:

1. Величина площади опоры. Это площадь, заключённая между граничными точками опоры. Она включает в себя активную площадь опоры, возникшую при контакте биологического тела с опорой, и пассивную. На практике мы в большей степени способны изменять пассивную площадь опоры (например, поставив ноги на ширине плеч). Чем больше общая площадь опоры, тем более устойчиво положение тела. Оптимальная площадь опоры в рукопашном бою — когда ноги ставятся на ширине плеч.

2. Высота расположения точки ОЦТ. Чем ниже точка ОЦТ тела, тем более устойчиво тело.

3. Прохождение линии тяжести. Линия тяжести — это перпендикуляр, опущенный из ОЦТ тела на площадь опоры. Прохождение линии тяжести позволяет оценить устойчивость тела в разных направлениях (для плоского изображения — в передне-заднем направлении). Если линия тяжести проходит через центр площади опоры, то степень устойчивости тела одинакова во всех направлениях; если она смещена в какую- то сторону, то в этом направлении степень устойчивости снижена.

4. Величина углов устойчивости. Угол устойчивости — это угол, образованный линией тяжести и линией, соединяющей ОЦТ с краем площади опоры.

Угол устойчивости — это динамический фактор устойчивости, он соединяет в себе три предыдущих — статических. Попробуйте изменить один из предыдущих факторов устойчивости, это сразу же отразится на углах устойчивости. Смысл такого угла заключается в следующем: это угол, при повороте на который тело возвращается в исходное положение. Если тело будет повёрнуто на угол, превышающий величину угла устойчивости, то потеряет устойчивость и перейдёт в другое положение. Углы устойчивости тела при рассмотрении плоского изображения характеризуют устойчивость в переднем и заднем направлении. Чем больше углы устойчивости, тем более устойчиво тело в данном направлении.

5. Коэффициент устойчивости тела характеризует способность тела сохранять устойчивость при действии опрокидывающей силы. Уметь управлять коэффициентом устойчивости (изменяя позу, менять момент устойчивости) — это задача каждого обучающегося рукопашному бою. С точки зрения биомеханики, в рукопашной схватке мы преследуем следующие цели:

— сохранение и использование своего равновесия;

— выведение из равновесия противника и использование его потери устойчивости в своих целях.

Осознанное применение законов механики при изучении движений человека, в конечном счете, направлено на изыскание способов совершенствования двигательных действий.

Ещё одним промежуточным выводом из изложенного материала является необходимость использования при ведении рукопашного боя принципа минимума энергозатрат. Он заключается в следующем: психически нормальное живое существо произвольно организует свою двигательную деятельность так, чтобы свести к минимуму затраты энергии. Следует избегать излишних, непроизводительных мышечных сокращений и напряжений, а также уменьшать лишние непроизводительные движения. Дальнейшим развитием этого принципа является использование рекуперации энергии, то есть:

— выбирать наименее энергоёмкое сочетание проявляемой силы и быстроты;

— использовать энергию, переходящую от одного сегмента тела к другому (например, выхлест голени за счёт энергии, накопленной при махе бедром);

— использовать энергию упругой деформации, накопленную в мышцах в предыдущих фазах двигательного действия.

Из того же принципа минимума энергозатрат вытекает и необходимость для управления противником и его поражения, использовать в рукопашном бою рычаги, инерцию, набранную противником, крутящий момент. Использование этих элементов позволяет значительно уменьшить энергозатраты бойца, ведущего рукопашный бой. Следует осуществлять оптимальные двигательные переключения, а именно:

— изменение интенсивности мышечной работы (например, скорости передвижения);

— изменение, проявляемое в двигательном действии силы и скорости (например, длины и частоты шагов);

— переход с одного способа выполнения двигательного действия на другой (например, атакующие или защитные попеременные действия руками, ногами).

Привлечение внимания читателя к этим положениям позволяет ещё раз подчеркнуть важность теоретических основ рукопашного боя и логичность извлечения из них практических выводов.

Виды равновесия

Устойчивое равновесие

Именно его большинство людей обычно и понимают под «равновесием». Представьте себе шар на дне сферической чаши. В состоянии покоя он находится строго в центре чаши, где действие силы гравитационного притяжения Земли уравновешено силой реакции опоры, направленной строго вверх, и шар покоится там подобно тому, как вы покоитесь в своем кресле. Если сместить шар в сторону от центра, откатив его вбок и вверх в направлении края чаши, то, стоит его отпустить, как он тут же устремится обратно к самой глубокой точке в центре чаши — в направлении положения устойчивого равновесия.

Неустойчивое равновесие

Не всякое равновесие, однако, является устойчивым. Представьте себе шар, балансирующий на лезвии ножа. Направленная строго вниз сила земного притяжения в этом случае, очевидно, также полностью уравновешена направленной вверх силой реакции опоры. Но стоит отклонить центр шара в сторону от точки покоя, приходящейся на линию лезвия хоть на долю миллиметра (а для этого достаточно мизерного силового воздействия), как равновесие будет мгновенно нарушено и сила земного притяжения начнет увлекать шар всё дальше от него.

Безразличное равновесие

Промежуточный случай между устойчивым и неустойчивым равновесием — так называемое безразличное равновесие, при котором любая точка системы является точкой равновесия, и отклонение системы от исходной точки покоя ничего не изменяет в раскладе сил внутри нее. Представьте себе шар на абсолютно гладком горизонтальном столе — куда бы вы его ни сместили, он останется в состоянии равновесия.

Список литературы

 

1. А.П. Рыженков. Физика. Человек. Окружающая среда. М. Просвещение,1996

2. Савельев, И. В. . Курс физики : учеб. пособие для студентов вузов, обучающихся по техн. и технолог. направлениям и специальностям. В 3-х т. Т. 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. – Изд. 3-е, стер. – Спб. : Лань, 2007. – 320 с.

3. Физика 10 класс: учеб. для общеобразоват. учреждений/ Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. – 19–е изд. – М.: Просвещение, 2010. – 336 с.

 


Дата добавления: 2020-12-22; просмотров: 187; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!