Биологическое значение митоза

Биология 9 класс 27.11.2020г.

Тема: Клеточный цикл. Митотическое деление клеток. Мейоз. Биологическое значение мейоза.

Один из основных признаков живого — самовоспроизведение – определяется на клеточном уровне. Во время митотического деления из одной родительской клетки образуются две дочерние, что обеспечивает непрерывность жизни и передачи наследственной информации.

Жизнь клетки от начала одного деления до следующего деления называется клеточным циклом (рис. 1).

Промежуток между делениями клеток называется интерфаза.

Рис. 1. Клеточный цикл (против часовой стрелки – сверху вниз)

Этапы деления клетки

Деление клетки эукариот можно разделить на два этапа. Сначала происходит деление ядра (кариогенез), а затем деление цитоплазмы (цитогенез).

Рис. 2. Соотношение интерфазы и митоза в жизни клетки

 

Интерфаза

Интерфаза была открыта в 19 веке, когда ученые изучали морфологию клеток. Прибором для изучения клетки был световой микроскоп, а наиболее явные изменения в строении клеток происходили во время деления. Состояние клетки между двумя делениями получило название «интерфаза» – промежуточная фаза.

Самые важные процессы в жизни клетки (такие как транскрипция, трансляция и репликация) происходят именно во время интерфазы.

Клетка затрачивает на деление от 1 до 3 часов, а интерфаза может продолжаться от 20 минут до нескольких дней.

Интерфаза (на рис. 3 - I) состоит из нескольких промежуточных фаз:

Рис. 3. Фазы клеточного цикла

G1-фаза (фаза начального роста – пресинтетическая): происходит транскрипция, трансляция и синтез белков;

S-фаза (синтетическая фаза): происходит репликация ДНК;

G2-фаза (постсинтетическая фаза): происходит подготовка клетки к митотическому делению.

У дифференцированных клеток, которые более не делятся, отсутствует фаза G2, и они могут находиться в состоянии покоя в фазе G0.

Перед началом деления ядра хроматин (который, собственно, и содержит наследственную информацию) конденсируется и преобразуется в хромосомы, которые видны в виде нитей. Отсюда и название клеточного деления: «митоз», что в переводе означает «нить».

Митоз. Фазы митоза

Митоз — непрямое деление клетки, при котором из одной исходной клетки образуются две дочерние клетки с таким же набором хромосом, как и у материнской.

Этот процесс обеспечивает увеличение клеток, рост и регенерацию организмов.

У одноклеточных организмов митоз обеспечивает бесполое размножение.

Процесс деления путем митоза проходит в 4 фазы, в ходе которых копии наследственной информации (сестринские хромосомы) равномерно распределяются между клетками (рис. 2).

Профаза. Хромосомы спирализируются. Каждая хромосома состоит из двух хроматид. Растворяется ядерная оболочка, делятся и расходятся к полюсам центриоли. Начинает формироваться веретено деления - система белковых нитей, состоящих из микротрубочек, часть из которых прикрепляется к хромосомам, часть тянется от центриоли к другой.
Метафаза. Хромосомы располагаются в плоскости экватора клетки.
Анафаза. Хроматиды, из которых состоят хромосомы, расходятся к полюсам клетки, становятся новыми хромосомами.
Телофаза. Начинается деспирализация хромосом. Формирование ядерной оболочки, клеточной перегородки, образование двух дочерних клеток.

Рис. 4. Фазы митоза: профаза, метафаза, анафаза, телофаза

Профаза

Первая фаза митоза — профаза. Перед началом деления во время синтетического периода интерфазы происходит удвоение количества носителей наследственной информации – транскрипция ДНК.

Затем ДНК соединяется с белками-гистонами и максимально спирализуется, образуя хромосомы. Каждая хромосома состоит из двух сестринских хроматид, объединенных центромерой (см. видео). Хроматиды являются достаточно точными копиями друг друга – генетический материал (ДНК) хроматид копируется во время синтетического периода интерфазы.

Количество ДНК в клетки обозначают 4с: после репликации в синтетическом периоде интерфазы оно становится в два раза больше, чем количество хромосом, которое обозначается 2n.

В профазе разрушается ядерная оболочка и ядрышки. Центриоли расходятся к полюсам клетки и начинают при помощи микротрубочек формировать веретено деления. В конце профазы ядерная оболочка полностью исчезает.

Метафаза

Вторая фаза митоза – метафаза. В метафазе хромосомы присоединяются центромерами к нитям веретена деления, отходящим от центриолей (см. видео). Микротрубочки начинают выравниваться по длине, в результате чего хромосомы выстраиваются в центральной части клетки – на её экваторе. Когда центромеры располагаются на равном расстоянии от полюсов, их движение прекращается.

В световой микроскоп можно увидеть метафазную пластинку, которая образована хромосомами, расположенными на экваторе клетки. Метафаза и следующая за ней анафаза обеспечивают равномерное распределение наследственной информации сестринских хроматид между клетками.

Анафаза

Следующая фаза митоза — анафаза. Она самая короткая. Центромеры хромосом делятся, и каждая из освободившихся сестринских хроматид становится самостоятельной хромосомой.

Нити веретена деления разводят сестринские хроматиды к полюсам клетки.

 результате анафазы у полюсов собирается такое же количество хромосом, как и было в исходной клетке. Количество ДНК у полюсов клетки становится равно 2C, а количество хромосом (сестринских хроматид) – 2n.

Телофаза

Заключительная стадия митоза — телофаза. Вокруг хромосом (сестринских хроматид), собранных у полюсов клетки, начинает формироваться ядерная оболочка. В клетке у полюсов возникает два ядра.

Происходят процессы, обратные профазе: ДНК и белки хромосом начинают деконденсироваться, и хромосомы перестают быть видны в световой микроскоп, образуются ядерные оболочки, формируются ядрышки, в которых начинается транскрипция, исчезают нити веретена деления.

Окончание телофазы преимущественно совпадает с разделением тела материнской клетки — цитокинезом.

Цитокинез

Далее происходит разделение клетки: между новыми ядрами, расположенными у полюсов клетки, равномерно распределяются органоиды, формируется перегородка клеточной мембраны (плазмалеммы).

Распределение цитоплазмы в растительных и животных клетках происходит по-разному. В растительных клетках на месте метафазной пластинки образуется клеточная стенка, которая делит клетку на две дочерние. В этом участвует веретено деления с образованием специальной структуры — фрагмопласта. Животные клетки делятся с образованием перетяжки.

В результате митоза образуются две клетки, которые генетически идентичны исходной, хотя каждая из них содержит только одну копию наследственной информации материнской клетки. Копирование наследственной информации происходит во время синтетического периода интерфазы.

Иногда деление цитоплазмы не происходит, образуются двух- или многоядерные клетки.

Весь процесс митотического деления занимает от нескольких минут до нескольких часов, в зависимости от видовых особенностей живых организмов.

Биологическое значение митоза

Биологическое значение митоза заключается в сохранении постоянного числа хромосом и генетической стабильности организмов.

Кроме митоза, существуют и другие типы деления.

Практически у всех эукариотических клеток встречается так называемое прямое деление — амитоз.

Во время амитоза не происходит образование веретена деления и хромосом. Распределение генетического материала происходит случайным образом.

Путем амитоза, как правило, делятся клетки, которые завершают свой жизненный цикл. Например, эпителиальные клетки кожи или фолликулярные клетки яичников. Также амитоз встречается в патологических процессах, например, воспалениях или злокачественных опухолях.

Нарушение митоза

Правильное протекание митоза может нарушаться под действием внешних факторов. Например, под действием рентгеновского излучения хромосомы могут разрываться. Затем они восстанавливаются с помощью специальных ферментов. Однако, могут происходить ошибки. Такие вещества как спирты и эфиры, могут нарушать движение хромосом к полюсам клетки, что влечет к неравномерному распределению хромосом. В этих случаях клетка обычно погибает.

Есть вещества, которые влияют на веретено деления, но не влияют на распределение хромосом. В результате ядро не делится, а ядерная оболочка объединит вместе все хромосомы, которые должны были распределиться между новыми клетками. Образуются клетки с удвоенным набором хромосом. Такие организмы с удвоенным или утроенным набором хромосом называются полиплоидами. Метод получения полиплоидов широко используется в селекции для создания устойчивых сортов растений.

Мейоз (редукционное деление клетки) — деление, в процессе которого из одной диплоидной (2n) клетки получаются 4 гаплоидные (n) клетки.

Так как у дочерних клеток происходит уменьшение (редукция) числа хромосом с 2n до n, такое деление названо редукционным.

Схема мейоза

Мейоз у животных наблюдается при формировании гамет (гаметогенезе). Мейоз у растений и грибов, как правило, происходит при образовании гаплоидных спор. У различных одноклеточных эукариот мейоз может наблюдаться на разных стадиях жизненного цикла. Для восстановления диплоидности в цикле всегда необходимо слияние гаплоидных клеток (оплодотворение).

Мейоз состоит из двух делений. Первое из них является собственно редукционным, то есть именно в ходе первого деления уменьшается плоидность клетки. Причиной этого служит расхождение гомологичных хромосом («материнской» и «отцовской») по двум разным дочерним клеткам. Второе деление аналогично митозу и называется эквационным (то есть «равным»). Плоидность в результате второго деления не меняется. В ходе этого деления, как и при митозе, расходятся сестринские хроматиды (копии ДНК). Между двумя делениями мейоза отсутствует репликация ДНК (так как «цель» мейоза — уменьшить плоидность клетки, увеличивать количество ДНК здесь незачем).

 

 

В профазе I деления мейоза происходит важнейший процесс, относящийся к генетической рекомбинации — кроссинговер, то есть обмен участками гомологичных хромосом. В результате этого процесса создаются новые комбинации генов в потомстве. Хромосомы как целое не передаются напрямую от бабушек и дедушек внукам, а «реконструируются» в каждом поколении в процессе кроссинговера.

В нижеследующей таблице приведено описание фаз мейоза в клетке, для которой n=2, 2n=4. В каждом наборе есть три хромосомы, различающиеся по размеру. Материнский и отцовский хромосомные наборы выделены синим и красным.

 

Фаза Процесс Описание
Профаза I 2n4c   конденсация (сверхспирализация) хромосом (видны в электронный микроскоп); конъюгация (соединение) гомологичных хромосом с образованием бивалентов; кроссинговер — обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой; ядерная оболочка растворяется; центриоли расходятся к полюсам
Метафаза I 2n4c   биваленты выстраиваются вдоль экватора клетки
Анафаза I 2n4c   микротрубочки веретена деления сокращаются, биваленты делятся; к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая
Телофаза I n2c x 2   хромосомы деспирализуются («раскручиваются»); формируется ядерная оболочка

Второе деление мейоза следует непосредственно за первым, без интерфазы: репликации (удвоения) ДНК не происходит.

При мейозе I образовались 2 дочерние клетки. Далее будет рассмотрено их деление, поэтому в формуле хромосомного набора стоит коэффициент 2.

Профаза II n2c x 2   конденсация (сверхспирализация) хромосом; клеточный центр делится, центриоли расходятся к полюсам ядра; разрушается ядерная оболочка; образуется веретено деления
Метафаза II n2c x 2   двухроматидные хромосомы располагаются в плоскости «экватора» (метафазная пластинка)
Анафаза II 2nc x 2   центромеры делятся; однохроматидные хромосомы расходятся к полюсам
Телофаза II nc x 4   хромосомы деспирализуются; формируется ядерная оболочка

Протекание мейоза, как правило, нарушается в клетках гибридных организмов, т. к. в профазе I должно происходить попарное слияние (конъюгация) гомологичных хромосом, а у гибридов набор материнских генов не гомологичен отцовскому.

Данный механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и в конечном счете к нежизнеспособности гамет, а следовательно, к стерильности (бесплодию) гибридов.

В селекции для преодоления стерильности гибридов искусственно вызывают полиплоидность (кратное увеличение) хромосомных наборов. В этом случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора.

Значение мейоза

Половые клетки родителей, образовавшиеся путем мейоза, обладают гаплоидным набором (n) хромосом. В зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n). Формирование нового организма происходит путем митотических делений зиготы, и каждая его клетка содержит диплоидный (2n) набор хромосом. Каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому. Исходя из этого:

  1. Мейоз является основой комбинативной изменчивости благодаря кроссинговеру (профаза I) и независимому расхождению гомологичных хромосом (анафаза I и II).
  2. Благодаря уменьшению количества хромосом в гаметах в новых организмах поддерживается постоянный диплоидный (2n) набор хромосом.

 

Домашнее задание: просмотреть видео https://youtu.be/hCBbO4JUgHA

https://youtu.be/ek3h2vyJARE

изучить параграф 11, 12, составить конспект параграфов или этого материала, схемы митоза и мейоза зарисовать.


Дата добавления: 2020-12-22; просмотров: 127; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!