РАЗВИТИЕ ВАЖНЕЙШИХ ФУНКЦИОНАЛЬНЫХ СИСТЕМ МОЗГА.



Лекция №2.

Онтогенез нервной системы. Учение о системогенезе.

Возрастная эволюция мозга и принцип гетерохронности.

 

ОНТОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ

Нервная система плода начинает развиваться на ранних этапах эмбриональной жизни. Из наружного зародышевого листка - эктодермы - по спинной поверхности туловища эмбриона образуется утолщение - нервная трубка. Головной конец ее развивается в головной мозг, остальная часть - в спинной мозг.

    На 3-й неделе зародышевого развития в головном отделе нервной трубки образуются три первичных мозговых пузыря (передний, средний и задний), у 4-5- недельного эмбриона уже образуется пять мозговых пузырей: конечный (телэнцефалон), промежуточный (диэнцефалон), средний (мезэнцефалон), задний (метэнцефалон) и продолговатый (миелэнцефалон). Впоследствии из конечного мозгового пузыря развиваются полуша­рия головного мозга и подкорковые ядра, из промежуточного – промежуточный мозг (зрительные бугры, подбугорье), из средне­го формируется средний мозг - четверохолмие, ножки мозга, сильвиев водопровод, из заднего - мост мозга (варолиев мост) и мозжечок, из продолговатого - продолговатый мозг. Задняя часть миелэнцефалона плавно переходит в спинной мозг.

    Из полостей мозговых пузырей и нервной трубки образуются желудочки головного мозга (их четыре) и канал спинного мозга. (Полости заднего и продолговатого мозговых пузырей превращаются в IV желудочек, полость среднего мозгового пузыря - в узкий канал, называемый водопроводом мозга (сильвиев водопровод), который сообщает между собой III и IV желудочки. Полость промежуточного пузыря превращается в III желудочек, а полость конечного пузыря - в два боковых желудочка). Все желудочки имеют сообщение между собой и с каналом спинного мозга. В желудочках и спинномозговом канале циркулирует церебральная жидкость.

    Связь между различными отделами головного и спинного мозга осуществляется посредством отростков нейронов. Чувствительные нейроны, входя в связь с другими органа­ми, заканчиваются рецепторами - периферическими приборами, воспринимающими раздражение. Двигательные нейроны заканчиваются мионевральным синапсом - контактным образованием нервного волокна с мышцей.

    К 3-му месяцу внутриутробного развития выделяются основные части центральной нервной системы: большие полушария и ствол мозга, мозговые желудочки, а также спинной мозг. К 5-му месяцу дифференцируются основные борозды коры больших полушарий, однако кора остается еще недостаточно развитой. На 6-м месяце отчетливо выявляется функциональное превалирование высших отделов нервной системы плода над нижележащими отделами.

    Головной мозг новорожденного имеет относительно большую величину. Масса его в среднем составляет 1/8 массы тела, т.е. около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены борозды, круп­ные извилины, однако их глубина и высота невелики. Мелких борозд относительно мало, они появляются постепенно в тече­ние первых лет жизни. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам она составляет 1/13-1/14 массы тела. К 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела. Рост мозга происходит главным образом за счет миелинизации нервных проводников (т.е. покрытия их особой, миелиновой, оболочкой) и увеличения размера имеющихся уже при рождении примерно 20 млрд. нервных клеток.

    Мозговая ткань новорожденного малодифференцированна, т.е. развита плохо. Лишь в 15-16 лет строение мозга напоминает строение мозга взрослого, но недоразвит мозжечок, мелкие извилины и мозолистое тело.

    После рождения активно развивается спинной мозг, по сравнению с головным спинной мозг новорожденного имеет более законченное морфологическое строение. В связи с этим он оказывается более совершенным и в функциональном отношении. Спинной мозг у новорожденного относительно длиннее, чем у взрослого. В дальнейшем рост спинного мозга отстает от роста позвоночника, в связи с чем его нижний конец «перемещается» кверху. Рост спинного мозга продолжается приблизительно до 20 лет и наиболее выражен в грудном отделе. В первые годы жизни ребенка начинают формироваться шейное и поясничное утолщения спинного мозга. В этих утолщениях сконцентрированы клетки, иннервирующие верхние и нижние конечности.

    Периферическая нервная система новорожденного недостаточно миелинизирована, пучки нервных волокон редкие, распределены неравномерно. Процессы миелинизации происходят неравномерно в различных отделах. Миелинизация черепных нервов наиболее активно происходит в первые 3-4 месяца и заканчивается к 1 году. Миелинизация спинномозговых нервов продолжается до 2-3 лет. Вегетативная нервная система функционирует с момента рождения. В дальнейшем отмечаются слияние отдельных узлов и образование мощных сплетений симпатической нервной системы.

    На ранних этапах эмбриогенеза между различными отделами нервной системы формируются четко дифференцированные, «жесткие» связи, создающие основу для жизненно необходимых врожденных реакций. Набор этих реакций обеспечивает первичную адаптацию после рождения (например, пищевые, дыхательные, защитные реакции). Взаимодействие нейронных групп, обеспечивающих ту или иную реакцию либо комплекс реакций, составляет функциональную систему.

 

РАЗВИТИЕ ВАЖНЕЙШИХ ФУНКЦИОНАЛЬНЫХ СИСТЕМ МОЗГА.

УЧЕНИЕ О СИСТЕМОГЕНЕЗЕ

 

Функциональная система есть объединение различных нервных элементов, участвующих в обеспечении какой-либо функции. Она является важнейшим саморегулирующимся механизмом мозга. Для оценки уровня индивидуального развития нервной системы (онтогенетического уровня) имеет значение не столько оценка степени анатомической зрелости тех или иных элементов, сколько оценка их способности регулировать определенную функцию. Отсюда следует, что процессы онтогенеза можно понять глубоко с позиций системогенеза, т.е. не изолированного, а посистемного развития нервных элементов. Основы учения о системогенезе были заложены выдающимся советским физиологом П.К. Анохиным.

    Понятие «функциональная система» позволяет объяснить некоторые закономерности становления нервно-психических функций в онтогенезе. Важное значение имеет тот факт, что отдельные компоненты функциональной системы формируются примерно в одно и то же время, хотя и могут принадлежать к филогенетически разным уровням. Вследствие этого в процессе эмбрионального развития наряду с общей последовательностью образования различных отделов нервной системы (по принципу - сначала эволюционно более древние, а затем более молодые) наблюдаются и отклонения от последовательности, а именно посистемное созревание нервных элементов - системогенез. В первую очередь формируются те функциональные системы, которые имеют первостепенное жизненное значение. В функциональную систему могут объединяться разные в эволюционном плане уровни; поэтому в пределах одного и того же уровня можно наблюдать разные степени созревания отдельных элементов в зависимости от их вовлеченности в функциональную систему.

    Принцип неодновременности, гетерохронности можно проиллюстрировать многими примерами. Например, неравномерно созревают отдельные волокна лицевого нерва, иннервирующие мышцы лица. У новорожденных наиболее готовы к функционированию те нервные клетки и их волокна, которые имеют отношение к акту сосания, тогда как другие волокна лицевого нерва еще не миелинизированы. Другим примером системогенеза может быть организация у новорожденных механизма хватательного рефлекса. Уже на 4-6-м месяце внутриутробного развития человеческого эмбриона из всех нервов руки наиболее полно созревают те, которые обеспечивают сокращение сгибателей пальцев. Кроме того, к этому периоду дифференцируются клетки передних рогов спинного мозга на уровне восьмого шейного сегмента, где расположены двигательные нейроны сгибателей пальцев кисти, формируются связи с вышестоящими регулирующими отделами нервной системы.

    Установлено несколько важнейших принципов системогенеза. Первый принцип заключается в том, что функциональные системы формируются не одновременно, а по мере жизненной необходимости, связанной с условиями существования организма. Так, новорожденный ребенок наделен готовыми системами, обеспечивающими регуляцию наиболее важных процессов - сосания, глотания, дыхания. Представители других видов к моменту рождения располагают гораздо большим количеством готовых функциональных систем. В частности, детеныш кенгуру способен самостоятельно забираться в сумку матери, а только что вылупившийся из яйца гусенок следовать за матерью или любым движущимся предметом.

    Наряду с этим имеет место значительное несовершенство зрительных, слуховых, двигательных реакций. В неодновременности формирования реагирующих механизмов заключается принцип гетерохронности созревания отделов нервной системы.

    Второй принцип системогенеза состоит в межсистемной и внутрисистемной гетерохронности. Межсистемная гетерохронность - неодновременные закладка и формирование разных функциональных систем (сосание и зрительный контроль). Внутрисистемная гетерохронность - постепенное усложнение формирующейся функции. Первоначально созревают элементы, дающие возможность минимального обеспечения функции; затем постепенно вступают в строй и другие отделы данной системы, позволяющие реагировать на внешние и внутренние воздействия более тонко. Например, развитие хватательных функций руки. В первые месяцы жизни любое раздражение ладони вызывает сжимание кисти в кулачок. Впоследствии схватывание становится более избирательным, возникает сопротивление большого пальца остальным. Внутрисистемная гетерохрония обусловлена не только дозреванием элементов данной функциональной системы, но и установлением межсистемных связей. Например, автоматическое схватывание усложняется по своей двигательной организации, но в то же время начинает все более явственно обнаруживаться зрительный контроль над действием руки (зрительно-моторная координация).

    Учение о системогенезе позволяет понять причины строгой последовательности и преемственности этапов нервно-психического развития ребенка. Например, удерживание головы предшествует сидению, сидение - стоянию, стояние - ходьбе. Способность удерживать голову является важной предпосылкой для контроля за положением тела. Это достигается благодаря совершенствованию органа равновесия и за счет усложняющегося зрительного контроля.

    Подход с позиций системогенеза позволяет не только находить критерии для возрастных нормативов той или иной функции, но и выяснять структурно-функциональные основы различных аномалий развития. Может наблюдаться как полное, равномерное недоразвитие целостной функциональной системы, так и недоразвитие отдельных ее звеньев с установлением аномальных связей между нервными центрами.

    Особенно наглядно варианты межсистемного и внутрисистемного недоразвития проявляются при различных формах патологии речи. Встречаются дети с общей моторной неловкостью и с грубым косноязычием. Однако наблюдается немало случаев, когда общая моторика практически не страдает, а в речи обнаруживается много дефектов - заикание, «пулеметная», невнятная речь и т.д. Наконец, приходится наблюдать учеников с изолированными расстройствами письма при достаточно хорошей устной речи. Принципы системогенеза позволяют конкретизировать, структурно определять отклонения в возрастной эволюции нервной системы и намечать пути преодоления формирующихся дефектов.

    К числу других важнейших функциональных систем мозга относятся слуховая, зрительная и интеллектуальная сфера.

 

ВОЗРАСТНАЯ ЭВОЛЮЦИЯ МОЗГА

 

В процессе онтогенетического развития мозг человека претерпевает значительные изменения. В анатомическом отношении мозг новорожденного и мозг взрос­лого человека существенно различаются. Это означает, что в процессе индивидуального развития происходит возрастное эволюционирование мозговых структур. Кроме того, даже после завершения морфологического созревания нервной системы человека остается необъятная «зона роста» в смысле совершенствования, перестройки и нового образования функциональных систем. Мозг как совокупность нервных элементов у всех людей остается примерно одинаковым, но на основе этой первичной структуры создается бесконечное разнообразие функциональных особенностей. Завершенность биологической эволюции человека следует понимать не как конечный пункт, а как динамический момент, открывающий большие возможности для индивидуальных вариаций, для постоянного совершенствования личности.

    В процессе эволюции мозга можно выявить два важнейших стратегических направления. Первое из них заключается в максимальной предуготованности организма к будущим условиям существования. Это направление характеризуется большим набором врожденных, инстинктивных реакций, которыми организм оснащен буквально на все случаи его жизни. Однако набор таких «случаев» довольно стереотипен и ограничен (питание, защита, размножение).

 

Однако главное не в количестве, а в структуре мозгового вещества. В рамках второго направления эволюции, предоставившего индивидам наибольшее число степеней свободы действия, происходит неуклонное увеличение размеров коры больших полушарий мозга. Этот отдел является наименее специализированным и, следовательно, наиболее пригодным для фиксации личного опыта. Принцип кортикализации функций, таким образом, предполагает возможность их непрерывного совершенствования.

Новорожденный фактически ничего не умеет и практически всему может и должен научиться в течение жизни. Как избежать ошибок и искажений в развитии, как добиться формирования гармоничной, творческой личности? Существует мнение, что все зависит от воспитания. Новорожденного можно сравнить с своего рода нулевым циклом предстоящей постройки, и из этого нуля можно сотворить все, что угодно.

    Взгляд на период новорожденности как на нулевую фазу не нов. Еще в XVII в. Д. Локк развивал идеи о том, что душа ново­рожденного - «чистая доска», «пустое помещение», которое заполняется в процессе развития и воспитания. Эти постулаты надолго закрепились в педагогике. Однако современные исследования показывают, что мозг новорожденного - не просто безликая масса клеток, ожидающих внешних воздействий, а генетически запрограммированная система, постепенно реализующая заложенную в нее тенденцию развития. Только что родившийся ребенок - далеко не «нуль», а сложнейший результат насыщенного перестройками периода внутриутробного развития.

Если продолжить сравнение мозга новорожденного с «чистой доской», незаполненной тетрадью, то можно отметить, что несмотря на внешнее сходство всех тетрадей каждый экземпляр имеет свои особенности. В одном, например, нельзя писать чернила­ми (они расплываются), в другом обнаруживаются неразрезанные страницы (поневоле приходится оставлять пустые места), в третьем перепутана нумерация страниц и необходимо делать записи не по порядку, а в разных местах. Более того, практически невозможно записать во все экземпляры один и тот же текст, одни и те же сведения, не говоря уже о различиях формы, стиля изложения и почерка. В одних случаях изложение получается предельно сухим, в других - романтически приподнятым, в третьих целые фрагменты оказываются совершенно неразборчивыми. Однако следует отметить, что сравнение мозга с тетрадью чересчур поверхностно, ибо мозг человека - это не компьютер для фиксации сведений, а система, активно перерабатывающая информацию и способная самостоятельно извлекать новую информацию на основе творческого мышления. Главной причиной творческого, интеллектуального развития ребенка является необходимость взаимодействия отдельных форм поведения в ходе решения возникающих и усложняющихся в окружении ребенка жизненных задач.

    На основе изучения развивающегося мозга можно условно говорить о «биологическом каркасе личности», который влияет на темп и последовательность становления отдельных личностных качеств. Понятие «биологический каркас» динамическое. Это, с од­ной стороны, генетическая программа, постепенно реализующаяся в процессе взаимодействия со средой, с другой - промежуточный результат такого взаимодействия. Динамичность «биологического каркаса» особенно наглядна в детстве. По мере повзросления биологические параметры все более стабилизируются, что дает возможность разрабатывать типологию темпераментов и других личностных характеристик.

    Важнейшими факторами «биологического каркаса личности» являются особенности мозговой деятельности. Эти особенности генетически детерминированы, однако эта генетическая программа всего лишь тенденция, возможность, которая реализуется с различной степенью полноты и всегда с какими-то модификациями. При этом играют большую роль условия внутриутробного развития и различные факторы внешней среды, воздействующие после рождения. Все же влияния внешних факторов не беспредельны. Генетическая программа определяет предел колебаний в своей реализации, и этот предел принято обозначать как норму реакции.

Например, такие функциональные системы, как зрительная, слуховая, двигательная, могут существенно различаться в нормах реакции. У одного человека от рождения присутствуют задатки абсолютного музыкального слуха, другого нужно обучать различению звуков, но выработать абсолютный слух так и не удается. То же самое можно сказать о двигательной неловкости или, наоборот, одаренности. Таким образом, «биологический каркас» в известной степени предопределяет контуры того будущего ан­самбля, который называется личностью.

 

Говоря о вариантах нормы реакции отдельных функциональных систем, следует указать на относительную независимость их друг от друга. Например, между музыкальным слухом и моторной лов­костью нет однозначной связи. Можно прекрасно, тонко понимать музыку, но плохо выражать ее в движениях. Этот факт раскрывает одну из важнейших закономерностей эволюционирования мозга - дискретность формирования отдельных функциональных систем.

 


Дата добавления: 2020-11-27; просмотров: 244; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!