Дозиметрические и радиометрические приборы



Экспресс-метод – это ускоренный метод измерения, обеспечивающий проведение исследования в течение 10-30 минут после получения подготовленной пробы.

Для определения суммарной радиоактивности используются различные модификации прибора ДП-5, СРП-68-01, СРП-88 и др.

Приборы серии ДП-5 (рис. 1) используют при содержании в исследуемых пробах больших количеств радионуклидов, создающих повышенный уровень радиационного фона (от мР/ч до нескольких сотен Р/ч).

 

 

Рис. 1.  Радиометр ДП-5В

Радиометр-дозиметр СРП-68-01 (сцинтилляционный геологоразведочный приибор) предназначен для поиска залежей радиоактивных руд по их γ-излучению, для радиометрической съемки местности, радиометрического контроля карьеров и горных выработок и обнаружения радиоактивного загрязнения. Обладает повышенной радиочувствительностью (от нескольких мкР/ч), поэтому используется для радиометрии проб, содержащих допустимые количества радионуклидов.

Рис.  2. Прибор СРП-68-01 с одним из элементов питания к нему

Прибор предназначен для экспресс-определения объемной и удельной активности гамма-излучающих радионуклидов в пробах.

Данный измерительный прибор используются как радиометр для контроля внешней среды, различных химических веществ и продукции сельского хозяйства.

Измерение суммарной радиоактивности при применении экспрессных методов проводят в «толстом» слое проб, что очень важно для оперативного решения вопроса о дальнейшем использовании продукта или корма, то есть пригоден он к употреблению или подлежит дезактивации (промышленной переработке).

В обоих случаях для перевода показателей, определяемых приборами, в единицы радиоактивности (Бк/кг, Ки/кг) вводятся экспериментально установленные рабочие коэффициенты пересчета «К».

При определении радиоактивности γ-излучающих нуклидов с помощью прибора СРП-68-01 подготовку и размещение проб проводят в следующем порядке:

 1. Овощи, фрукты и грибы. Чисто вымыть и измельчить до однородного состояния пробы массой 0,7-1 кг. Поместить 200 - 300 г исследуемой пробы в литровую банку и плотно утрамбовать до ¼ объема (высоты) банки. Вставить детектор прибора по центру банки и заложить в нее оставшуюся часть измельченной пробы между щупом и стенкой, после чего ее плотно утрамбовать.

2. Ягоды. Поместить 700 г вымытых ягод в литровую банку и тщательно раздавить их ложкой. На дно банки поместить жестяную спираль. Смочить щуп чистой водой и вставить его в середину банки, погрузив до упора со спиралью. Проба должна полностью заполнить банку до верхнего края.

3. Лук, чеснок, пищевая зелень, лекарственные травы. Чисто вымытые зелень, лекарственные травы массой 250 г положить на полиэтиленовую (целлофановую) пленку и сделать из нее пакет шириной 8 см и длиной 30 - 32 см. Обернуть его дважды вокруг нижней части блока детектирования прибора таким образом, чтобы пакет свисал на 2 - 3 см ниже щупа. Свисающие кромки прижать к мембране щупа и зафиксировать их тесьмой.

4. Хлеб. Подготовить мякиши хлеба общей массой 0,7-1 кг, срезав предварительно корочки, которые могут иметь поверхностное загрязнение, контролируемое отдельное. Завернуть их в целлофан или полиэтилен, вдавить в центр пробы блок детектора на глубину 6 -7 см, обжать хлеб вокруг него руками и закрепить тесьмой.

5. Крупа, мука, сахар, сухое молоко и др. сыпучие продукты. Засыпать в банку объемом 1 л 700 г крупы или др. продукта так, чтобы до верхнего края банки оставалось 4 см. Вдавить щуп прибора в центр банки на расстоянии 2-3 см от дна. Измеряемая проба должна полностью заполнить банку до верхнего края, но не высыпаться из нее.

Радиометр РУБ-01П6 предназначен для измерения удельной и объемной активности проб объектов внешней среды, содержащих радионуклиды цезий-134 или цезий-137 или оба при известном процентном соотношении.

Его можно использовать для контроля жидких, сыпучих, пастообразных и других проб различных пищевых продуктов, в том числе проб сельскохозяйственной продукции с удельной плотностью 0,2 - 1,5 г/см3 любой влажности. Методика измерений согласована с различными ведомствами: с Минсельхозом, Госстандартом РФ и др. органами.

Радиометр РУБ-01П6 состоит из блоков детектирования БДКГ-03П и измерительного устройства УИ-38П2 (рис.3). В качестве детектора используется монокристалл NaI размером 63 × 63 мм.

Для уменьшения влияния внешнего гамма-фона блок детектирования размещен в сборной свинцовой защите с толщиной стенок 50 мм. Контролируемую пробу размещают в измерительной кювете (сосуд Маринелли) объемом 1 л.

 

Рис.3. Блок измерительного устройства УИ-38П2

 

Радиометр-спектрометр УБП-04 (рис.4) предназначен для измерения удельной и объемной активности проб объектов внешней среды, содержащих следующие радионуклиды: стронций-90, цезий-137, калий-40, радий-226 и торий-232.

Рис.4. Общий вид радиометра-спектрометра УБП-04

Прибор-сигнализатор СПСС-02 предназначен для регистрации сигналов от датчиков (блоков детектирования) ионизирующих излучений и выдачи сигналов о превышении заданной скорости счета, а также для управления внешними исполнительными устройствами. Применяется в радиохимическом производстве, на АЭС, в лабораториях и санпропускниках для технологического и радиационного контроля.

 

 

Рис. 5. Сигнализатор β-загрязненности поверхностей СПСС-02

Прибор РСУ- 01 «Сигнал-М» (рис.6) представляет собой универсальный комплекс оборудования, предназначенный в зависимости от модификации для измерения широкого спектра характеристик гамма-, бета-, альфа- и нейтронного ионизирующих излучений.

Прибор рекомендован к применению Центральной научно - производственной ветеринарной радиологической лабораторией и внесен в табель оснащения лабораторий ветсанэкспертизы.

 

Рис. 6. Гамма-радиометр РСУ-01 «Сигнал-М»

Радиометр радона РРА-01М-01 «Альфарад» (рис.7) применяется для комплексного санитарно-гигиенического обследования территорий и используется для работы в лабораторных и полевых условиях, согласно санитарных правили в соответствии с требованиями НРБ-99/2009 и ОСПОРБ-99/2010.

 

Рис. 7. Радиометр радона РРА-01М-01 «Альфарад»

Бета-радиометр РКБ4-1еМ (рис.8) предназначен для экспрессного измерения удельной (объемной) бета-радиоактивности воды, почвы, растений, пищевых продуктов. Радиометр применяется для комплексного санитарно-гигиенического контроля объектов внешней среды в полевых и лабораторных условиях.

Радиометр РКБ4-1еМ предназначен для измерения удельной и объемной активность нуклидов Sr90 + Y90, Cs137, Ce144 + Pr144, Ru106 + Rh106, Co60 - в воде, молоке, почве, донных отложениях, растительности; нуклида С14 - в водной среде, а также газов: Ar41, Kr85 и Xe133.

 

Рис. 8. Бета-радиометр РКБ4-1еМ

Дозиметр-радиометр ДРБП-03 предназначен для измерения мощности эквивалентной дозы (далее МЭД), эквивалентной дозы фотонного ионизирующего (рентгеновского и γ) излучения (далее ЭД) и плотности потока α- и β-частиц.

Дозиметры-радиометры применяются для оперативного дозиметрического контроля радиационной обстановки, при составлении радиационных карт местности и исследовании радиационных аномалий, для обнаружения загрязнения одежды, стен, полов и др.

 

 

Рис. 9. Внешний вид дозиметра-радиометра ДРБП-03

Основы радиоэкологии

Радиоэкология - это наука, изучающая распределение радионуклидов в биосфере, особенности жизнедеятельности организмов растений и животных в условиях с повышенной относительно фоновой радиоактивности.

Радиоактивные источники (радионуклиды) по происхождению делятся на естественные (природные) и искусственные.

Естественные радионуклиды появились с момента зарождения планеты Земля, в недрах которой они представлены радиоактивными семействами U-238 (T½ = 4,5 млрд. лет), U-235 (T½ = 704 млн. лет) и Th-232 (T½ = 14 млрд. лет). Во Вселенной радионуклиды космогенного характера в недрах звезд, Солнца представлены легкими по массе изотопами.

Искусственные радионуклиды появились в биосфере в результате испытаний и применения атомного оружия, аварий на АЭС и предприятий, использующих радиоактивные источники (металлургическая промышленность, производство ракетного топлива и т.д.). Следствием этого явилось образование радиоактивного облака, по ходу движения которого выпадали радиоактивные осадки, оставляя за собой радиоактивный след. В нем преобладают долгоживущие нестабильные изотопы.

Первичные радиоактивные осадки состоят из тяжелых крупных частиц (конгломератов), оседающих с пылью или дождем на расстоянии до нескольких сотен километров.

Вторичные осадки состоят из более мелких образований радионуклидов, которые поднимаются на несколько километров в средние слои атмосферы и относятся воздушными потоками на сотни и тысячи километров от места взрыва.

Глобальные (поздние) осадки состоят из пылевидных частиц, которые поднимаются в верхние слои атмосферы и с потоками воздуха циркулируют в течение 5-6 лет, выпадая в любой точке планеты. Следовательно, радиоактивное загрязнение носит при этом не локальный, а глобальный характер.

Загрязнение водоемов и почвы дает начало распространению радионуклидов по пищевой (биологической) цепи.

Пищевая цепь - это распространение вещества и энергии между звеньями биогеоценоза, представляющими различные трофические уровни.

На миграцию радионуклидов по «пищевым» цепям влияют физико-химические свойства радионуклидов в почве, содержание в ней стабильных изотопов (химических аналогов), свойства самой почвы, коэффициенты накопления, биологические особенности растений и агротехника возделывания культур.

Особенность перехода радионуклидов между звеньями «пищевой» цепи определяет соответствующий коэффициент дискриминации (от лат. discriminatio - «различение») или различимости. Для Sr-90 и Cs-137 он рассчитывается по формулам:

Для более полной характеристики радиационной ситуации на территории хозяйства, в котором проводится отбор проб, обязательно рассчитывают коэффициент дискриминации. Он показывает передвижение, распространение и аккумулирование (накопление) радионуклидов во всех звеньях биологической цепи. В «пищевых» цепях, переходя от звена к звену, радионуклиды количественно изменяются, что можно рассчитать по выше приведенным формулам.

Отношение содержания Sr90 к Са в биологических объектах получила название стронциевой единицы (с.е.).

1 с.е. = 10-12 Ки Sr 90 на 1 г Ca

Аналогично этому было введено понятие цезиевой единицы (ц.е.) - единицы содержания радиоизотопа Cs137 в биологических объектах, соответствующей содержанию 1 мкКи Cs137 на 1 г калия, входящего в состав данного объекта:

1 ц.е. = 10-6 Ки Cs137 на 1 г К

При наличии дискриминации радиостронция или радиоцезия в пользу соответственно кальция или калия этот коэффициент меньше единицы. Если же он больше единицы, это свидетельствует об интенсивном депонировании радионуклидов в каждом последующем звене «пищевой» цепи.

Это может быть следствием радиоактивного загрязнения окружающей среды, когда идет выброс радионуклидов из почвы с земной массой накопления их. В обычных условиях это происходит при дефиците химически родственных элементов, выступающих в качестве конкурентов кальция и калия.

Стронций и кальций, цезий и калий являются химически родственными и в биологических средах ведут себя сходным образом. Однако, при миграции по звеньям «пищевой» цепи «почва…-…человек» оба элемента аккумулируются в разной степени: в большей - стабильные изотопы. Это, по-видимому, связано с тем, что в обменных процессах, в первую очередь, принимают участие необходимые для организма стабильные изотопы, а при их недостатке в процесс вступают их радиоактивные изотопы-аналоги. В этом проявляется принцип конкурентности.

Критерием допустимой и, как полагают, безопасной для человека концентрации искусственных радионуклидов в продуктах растительного и животного происхождения и в питьевой воде, служат допустимые пределы СанПиН («Санитарные правила и нормы»).

Расчеты предельно допустимых концентраций (ПДК) для продуктивных животных должны исходить из ПДК для человека как потребителя продуктов животного происхождения. Причем радионуклиды, поступающие в организм животных с кормом, могут не оказывать влияния на их продуктивность.

Животные легко переносят большие дозовые нагрузки I131, Sr90 и Cs137, чем человек. Однако мясомолочная продукция от таких животных не может быть использована, так как имеет концентрацию радионуклидов, превышающих ПДК для человека.

 


Дата добавления: 2020-11-23; просмотров: 216; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!