Предлагаемые схемы регулирования



Схемы с двумя независимыми регуляторами. Более предпочтительной является разработанная в ОАО «ВТИ» схема автоматического регулирования отопительной нагрузки с элеваторным присоединением, включающая два независимых регулятора: расхода и температуры подающей воды после элеватора. При этом регулятор расхода устанавливается на подающей линии перед элеватором. Регулятор температуры может быть установлен как на перемычке, так и за диффузором элеватора [4]. Схема с установкой регулятора температуры на линии смешения приведена на рис. 6.

 

 

Регулятор расхода поддерживает заданный (расчетный) расход в местной системе отопления. Регулятор температуры поддерживает требуемое по температурному графику для системы отопления значение температуры смешанной воды за элеватором в зависимости от температуры наружного воздуха.

Изменение температуры смешанной воды за элеватором при заданных температурах в подающей и обратной линиях тепловой сети может быть осуществлено только за счет изменения коэффициента смешения элеватора. При постоянных гидравлических сопротивлениях сопла элеватора и местной системы отопления изменить коэффициент смешения элеватора можно, меняя сопротивление клапана регулятора температуры. Эта особенность и лежит в основе рассматриваемого принципа регулирования.

 

 

С уменьшением гидравлического сопротивления клапана регулятора температуры коэффициент смешения возрастает, поэтому по мере роста температуры наружного воздуха регулятор температуры открывается, а регулятор расхода прикрывается для поддержания постоянства расхода смешанной воды. На рис. 7 и 8 приведены зависимости сопротивления регуляторов температуры и расхода для следующих расчетных условий: перепад давления на местной системе отопления 0,4 м; перепад давления на вводе 60 м; перепад давления на регуляторе температуры 3 м.

 

 

Таким образом, регулирование отпуска теплоты местной системой отопления осуществляется независимым регулированием двух величин: расхода теплоносителя в местной системе отопления и температуры теплоносителя на входе в местную систему отопления. Тем не менее, такая схема может применяться лишь при значительных по величине соотношениях располагаемых напоров в точке присоединения к тепловой сети и расчетных перепадах давления на местных системах отопления. Это потребители вблизи источников тепла и/или с малыми нагрузками отопления. При недостаточной величине указанного соотношения не удается получить требуемое увеличение коэффициента смешения, и необходимое регулирование нагрузки отопления может производиться лишь на части диапазона излома графика.

Аналогичные ограничения по располагаемым напорам в сети и на системах отопления имеют место при использовании в качестве регулятора температуры элеватора с регулирующей иглой, которая при ее входе в сопло уменьшает его проходное сечение, увеличивая тем самым коэффициент смешения элеватора. Расход воды в системе отопления, так же как и для предыдущей схемы, поддерживается регулятором расхода в местной системе.

Схема с регулируемым элеватором и двумя независимыми регуляторами. Обеспечить регулирование отпуска тепла во всем диапазоне излома температурного графика тепловой сети при низких значениях располагаемых напоров в точке присоединения возможно, использовав дополнительно к регуляторам расхода и температуры элеватор с регулируемым сечением сопла (рис. 9). Вдвигаемая в сопло игла здесь будет воздействовать на коэффициент смешения элеватора так же, как и изменение сопротивления регулятора температуры.

 

Проведенные расчеты показывают, что такая схема позволяет достичь того же эффекта по обеспечению температурного графика, что и схема с двумя регуляторами, при значительно более низких располагаемых перепадах на вводе. Это объясняется однонаправленным действием регулятора температуры и вдвигаемой в сопло иглы, а также тем, что игла, вдвигаясь в сопло и увеличивая коэффициент смешения, одновременно снижает расход прямой сетевой воды через сопло, работая в дополнение к регулятору расхода.

Рассматриваемая схема позволяет обеспечить требуемые температуру и массовый расход сетевой воды на входе в местную систему отопления на всем протяжении отопительного периода при сравнительно небольших значениях располагаемого перепада давления на вводе. Например, при расчетном перепаде давления на местной системе отопления 1,5 м требуемый перепад давления на вводе (на элеваторе) составит около 45 м (рис. 10).

 

 

Это существенно расширяет область возможного применения предлагаемой схемы автоматизации элеваторных узлов по сравнению со схемой, оснащенной только двумя регуляторами, и делает технически возможным регулирование подачи тепла на отопление при его независимом присоединении.

 

Выводы

1. В существующих системах теплоснабжения при центральном качественном регулировании по суммарной нагрузке отопления и ГВС и наличии зависимого присоединения систем отопления обеспечение регулирования подачи тепла на отопление позволяет получить значительную (до 5-13%) годовую экономию тепловой энергии, в основном в диапазоне излома температурного графика.

2. Существующие схемы регулирования элеваторных узлов не обеспечивают поддержания требуемого отпуска тепла на отопление или связаны с дополнительными затратами на оборудование, а также затратами электроэнергии на устанавливаемые насосы.

3. Приведены возможные способы (схемы) регулирования элеваторных узлов систем отопления без использования насоса смешения путем установки двух независимых регуляторов и оборудования элеваторов (при необходимости) соплом с регулирующей иглой. Такие схемы обеспечивают поддержание температурного графика в местных системах при постоянстве расхода воды на отопление.


Дата добавления: 2020-11-15; просмотров: 208; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!