Измерение широты и долготы (инструменты, хронометры).



Во второй половине XV-го века началась Эпоха Великих географических открытий. Плавания на дальние расстояния (зачастую в совершенно неизвестные края) поставило перед моряками новые задачи. Они были связаны, в первую очередь, с необходимостью точно определить свое местонахождение. А значит, необходимы были приборы для определения широты и долготы. Со времен Древней Греции были известны гномон и астролябия — астрономические инструменты для нахождения широты.

Сферическая астролябия.

Изобретателем астролябии считается женщина — Гипатия Александрийская. Примерная дата создания — 370 год до нашей эры. Причем применяли астролябию в начале в архитектуре для измерения высоты объектов. В Европе ее начали использовать лишь в XII-м веке для определения высоты небесных тел. Позднее, уже в XVIII-м веке был изобретен секстант — более совершенный прибор для определения широты. Принцип определения описал еще Исаак Ньютон. Он, правда, не опубликовал его, так что «отцом» секстанта считается английский математик Джон Хейли.

С измерением долготы все обстояло сложнее. Определить ее по углу возвышения Полярной звезды, как широту, возможным не представлялось. В XVII-м веке Англия, Франция и Голландия объявили, что выплатят солидные награды тому, кто найдет способ точного определения долготы. Свои методы предлагали многие ученые, включая Галилео Галилея. Его проект состоял в том, чтобы измерять долготу по положению спутников Юпитер. Метод этот, однако, требовал не только сложнейших вычислений, но и новых астрономических инструментов, которых в то время еще не существовало. Голландец Фризиус Гемме, в конце концов, предложил определять долготу, сравнивая время в точке нахождения со временем в порту отправки. Точные часы, позволявшие воплотить эту идею в жизнь, были созданы в 1749-м году Джоном Харрисоном.

Его хронометр вскоре стал неотъемлемой частью любого выходившего в море корабля. Долгота определялась по разнице во времени между точкой нахождения и Гринвичем.

Радионавигация (наземный аналог спутниковых систем).

Радионавига́ция — область науки и техники, охватывающая радиотехнические методы и средства вождения автомобилей, кораблей, летательных и космических аппаратов, а также других движущихся объектов.

Применение радионавигационных методов и средств позволило увеличить точность прохождения маршрутов движущимися объектами и вывода их в заданный район, а также значительно повысить безопасность хождения судов и полетов самолетов в сложных метеорологических условиях. Объединение различных радионавигационных устройств в определенные системы в принципе позволяет обеспечить выполнение всех основных задач навигации. Однако в целях повышения надежности и безопасности вождения объектов в наиболее сложных условиях такие системы на практике используют совместно с нерадиотехническими средствами, например с инерциальной навигационной системой, с которыми они образуют комплексные (комбинированные) системы навигации.

Виды радионавигационных систем

Наземные радионавигационные системы

ОНЧ

 США- Omega

 Россия- RSDN-20 «Альфа»

НЧ

США- Loran-C

Россия-Чайка

Великобритания- Decca

Великобритания- Consol

СССР- Марс-75

СССР- Брас

СССР- РС-10

ВЧ

СССР-РЫМ

 СССР-ГРАС

Метровые и дециметровые волны

СССР- РСБН

VOR/DME

Спутниковые радионавигационные системы

высокоорбитальные (высота орбиты порядка 35 тыс. км)

Китайская Народная Республика- Бэйдоу

среднеорбитальные (высота орбиты порядка 20 тыс. км)

 США-GPS

Россия- ГЛОНАСС

ЕС- «Галилео»

низкоорбитальные (высота орбиты порядка 1 тыс. км)

США -Transit (NAVSTAR)

СССР- «Парус», «Цикада»

Классификация

по способу определения местоположения:

угломерные;

дальномерные;

разностно-дальномерные (гиперболические);

комбинационные.

по виду несущего информацию и измеряемого параметра радиосигнала.\

Спутниковые системы позиционирования (наземный, спутниковый и пользовательские сегменты).

КОСМИЧЕСКИЙ СЕГМЕНТ.

Космический сегмент, состоящий из навигационных спутников, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника - формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника.

НАЗЕМНЫЙ СЕГМЕНТ.

В состав наземного сегмента входят космодром, командно-измерительный комплекс и центр управления. Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск.

Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами.

Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы.

 

 

ПОЛЬЗОВАТЕЛЬСКИЙ СЕГМЕНТ.

В пользовательский сегмент входит аппаратура потребителей. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.

Современная спутниковая навигация основывается на использовании принципа беззапросных дальномерных измерений между навигационными спутниками и потребителем. Это означает, что потребителю передается в составе навигационного сигнала информация о координатах спутников. Одновременно (синхронно) производятся измерения дальностей до навигационных спутников. Способ измерений дальностей основывается на вычислении временных задержек принимаемого сигнала от спутника по сравнению с сигналом, генерируемым аппаратурой потребителя.

Истинная дальность отличается от псевдодальности на величину, равную произведению скорости света на уход часов b, т.е. величину смещения часов потребителя по отношению к системному времени. На рисунке показан случай, когда уход часов потребителя больше нуля – то есть часы потребителя опережают системное время, поэтому измеренные псевдодальности меньше истинных дальностей.

В идеальном варианте, когда измерения производятся точно и показания часов спутников и потребителя совпадают для определения положения потребителя в пространстве достаточно произвести измерения до трех навигационных спутников.

В действительности показания часов, которые входят в состав навигационной аппаратуры потребителя, отличаются от показаний часов на борту навигационных спутников. Тогда для решения навигационной задачи к неизвестным ранее параметрам (три координаты потребителя) следует добавить еще один - смещение между часами потребителя и системным временем. Отсюда следует, что в общем случае для решения навигационной задачи потребитель должен «видеть», как минимум, четыре навигационных спутника.

Для функционирования навигационных спутниковых систем необходимы данные о параметрах вращения Земли, фундаментальные эфемериды Луны и планет, данные о гравитационном поле Земли, о моделях атмосферы, а также высокоточные данные об используемых системах координат и времени.

Геоцентрические системы координат - системы координат, начало которых совпадает с центром масс Земли. Их также называют общеземными или глобальными.

Для построения и поддержания общеземных систем координат используются четыре основных метода космической геодезии:

радиоинтерферометрия со сверхдлинной базой (РСДБ),

лазерная локация космических аппаратов (SLR),

доплеровские измерительные системы (DORIS),

навигационные измерения космических аппаратов ГЛОНАСС и других ГНСС.

Международная земная система координат ITRF является эталоном земной системы координат.


Дата добавления: 2020-11-15; просмотров: 131; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!