Физические законы и размерности физических величин



ГЛАВА  3

Качество измерений

 

Без измерений не может обойтись ни одна наука, поэтому метрология как наука об измерениях находится в тесной связи со всеми другими науками. Поэтому, основное понятие метрологии - измерение. Согласно ГОСТ 16263 - 70, измерение - это нахождение значения физической величины (ФВ) опытным путем с помощью специальных технических средств.

Возможность измерения обуславливается предварительным изучением заданного свойства объекта измерений, построением абстрактных моделей как самого свойства, так и его носителя - объекта измерения в целом. Поэтому, место измерения определяется среди методов познания, обеспечивающих достоверность измерения. С помощью метрологических процедур решаются задачи формирования данных (фиксации результатов познания). Измерение с этой точки зрения представляет собой метод кодирования сведений и регистрации полученной информации.

Измерения обеспечивают получение количественной информации об объекте управления или контроля, без которой невозможно точное воспроизведение всех заданных условий технического процесса, обеспечение высокого качества изделий и эффективного управления объектом. Все это составляет технический аспект измерений.

До 1918 г. метрическая система внедрялась в России факультативно, наряду со старой русской и английской (дюймовой) системами. Значительные изменения в метрологической деятельности стали происходить после подписания Советом народных комиссаров РСФСР декрета "О введении международной метрической системы мер и весов". Внедрение метрической системы в России происходило с 1918 по 1927 г. После Великой Отечественной войны и до сего времени метрологическая работа в нашей стране проводится под руководством Государственного комитета по стандартам (Госстандарт).

В 1960 г. ХI Международная конференция по мерам и весам приняла Международную систему единиц ФВ - систему СИ. Сегодня метрическая система узаконена более чем в 124 странах мира.

В настоящее время на базе Главной палаты мер и весов существует высшее научное учреждение страны - Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева (ВНИИМ). В лабораториях института разрабатываются и хранятся государственные эталоны единиц измерений, определяются физические константы и свойства веществ и материалов. Тематика работ института охватывает линейные, угловые, оптические и фотометрические, акустические, электрические и магнитные измерения, измерения массы, плотности, силы, давления, вязкости, твердости, скорости, ускорения и ряда других величин.

В 1955 г. под Москвой был создан второй метрологический центр страны - ныне Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений (ВНИИФТРИ). Он разрабатывает эталоны и средства точных измерений в ряде важнейших областей науки и техники: радиоэлектронике, службе времени и частоты, акустике, атомной физике, физике низких температур и высоких давлений.

Третьим метрологическим центром России является Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС) - головная организация в области прикладной и законодательной метрологии. На него возложена координация и научно-методическое руководство метрологической службой страны. Кроме перечисленных существует ряд региональных метрологических институтов и центров.

К международным метрологическим организациям относится и Международная организация законодательной метрологии (МОЗМ), образованная в 1956 г. При МОЗМ в Париже работает Международное бюро законодательной метрологии. Его деятельностью руководит Международный комитет законодательной метрологии. Некоторые вопросы метрологии решает Международная организация по стандартизации (ИСО).

 

 

Физические свойства и величины. Классификация физических величин.

Шкалы измерений

Все объекты окружающего мира характеризуются своими свойствами.

Свойство - философская категория, выражающая такую сторону объекта (явления или процесса), которая обусловливает его различие или общность с другими объектами, и обнаруживается в его отношениях к ним. Свойство - категория качественная. Для количественного описания различных свойств физических тел, явлений и процессов вводится понятие величины.

Величина - это мера объекта (явления, процесса или чего-либо другого), мера того, что может быть выделено среди других свойств и оценено тем или иным способом, в том числе и количественно. Величина не существует сама по себе, она имеет место лишь постольку, поскольку существует объект со свойствами, выраженными данной величиной.

Таким образом, понятие величина, это понятие большей общности, чем качество (свойство, атрибут) и количество.

 

Физические свойства и величины

Существует два вида величин: реальные и идеальные.

Идеальные величины (числовые значения величин, графики, функции, операторы и т.п.) главным образом относятся к математике и являются обобщением (математической моделью) конкретных реальных понятий. Они вычисляются тем или иным способом.

Реальные величины, в свою очередь, подразделяются, как физические и нефизические. При этом, физическая величина в общем случае может быть определена как величина, свойственная материальным объектам (телам, процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. К нефизическим величинам следует отнести величины, присущие общественным (нефизическим) наукам - философии, социологии, экономике и т.п.

Стандарт ГОСТ 16263-70 трактует физическую величину, как численное выражение конкретного свойства физического объекта, в качественном отношении общее для многих физических объектов, а в количественном, абсолютно индивидуальное для каждого из них. Индивидуальность в количественном отношении здесь понимается в том смысле, что свойство может быть для одного объекта больше, в определенное число раз, или меньше, чем для другого.

Таким образом, физические величины - это измеренные свойства физических объектов или процессов, с помощью которых они могут быть изучены.

Физические величины (ФВ) целесообразно дополнительно классифицировать, как измеряемые и оцениваемые.

Измеряемые физические величины могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования единиц измерения, является важным отличительным признаком измеряемых ФВ.

Физические величины, для которых по тем или иным причинам не может быть введена единица измерения, могут быть только оценены. Под оцениваниемв таком случае понимается операция приписывания данной величине определенного числа, проводимая по установленным правилам. Оценивание величины осуществляется при помощи шкал.

Нефизические величины, для которых единицы измерения и шкалы в принципе не может быть введены, могут быть только оценены.

 

Классификация физических величин

Для более детального изучения ФВ необходимо их классифицировать, выявив общие метрологические особенности их отдельных групп. Возможные классификации ФВ показаны на рис. 2.2.

По видам явлений они делятся на следующие группы:

· вещественные, т.е. описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе относятся масса, плотность, электрическое сопротивление, емкость, индуктивность и др. Иногда указанные ФВ называют пассивными. Для их измерения необходимо использовать вспомогательный источник энергии, с помощью которого формируется сигнал измерительной информации. При этом пассивные ФВ преобразуются в активные, которые и измеряются;

· энергетические, т.е. величины, описывающие энергетические характеристики процессов преобразования, передачи и использования энергии. К ним относятся ток, напряжение, мощность, энергия. Эти величины называют активными. Они могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

·

 

характеризующие протекание процессов во времени. К этой группе относятся различного вида спектральные характеристики, корреляционные функции и др.

 

 

По принадлежности к различным группам физических процессов ФВ делятся на пространственно-временные, механические, тепловые, электрические и магнитные, акустические, световые, физико-химические, ионизирующих излучений, атомной и ядерной физики.

По степени условной независимости от других величин данной группы ФВ делятся на основные (условно независимые), производные (условно зависимые) и дополнительные. В настоящее время в системе СИ используется семь физических величин, выбранных в качестве основных: длина, время, масса, температура, сила электрического тока, сила света и количества вещества. К дополнительным физическим величинам относятся плоский и телесный углы.

По наличию размерности ФВ делятся на размерные, т.е. имеющие размерность, и безразмерные.

Физические объекты обладают неограниченным числом свойств, которые проявляются с бесконечным разнообразием. Это затрудняет их отражение совокупностями чисел с ограниченной разрядностью, возникающее при их измерении. Среди множества специфических проявлений свойств есть и несколько общих. Н.Р. Кэмпбелл установил для всего разнообразия свойств Х физического объекта наличие трех наиболее общих проявлений в отношениях эквивалентности, порядка и аддитивности. Эти отношения в математической логике аналитически описываются простейшими постулатами.

При сравнении величин выявляется отношение порядка (больше, меньше или равно), т.е. определяется соотношение между величинами. Примерами интенсивных величин являются твердость материала, запах и др.

Интенсивные величины могут быть обнаружены, классифицированы по интенсивности, подвергнуты контролю, количественно оценены монотонно возрастающими или убывающими числами.

На основании понятия "интенсивная величина" вводятся понятия физической величины и ее размера. Размер физической величины - количественное содержание в данном объекте свойства, соответствующего понятию ФВ.

 

Шкалы измерений

В практической деятельности необходимо проводить измерения различных физических величин, характеризующих свойства тел, веществ, явлений и процессов. Некоторые свойства проявляются только качественно, другие - количественно. Разнообразные проявления (количественные или качественные) того, или иного свойства объекта исследования, образуют множество, отображения элементов которого на упорядоченное множество чисел, или, в, более общем случае, условных знаков, образуют шкалу измерения этого свойства. Шкала измерений количественного свойства конкретной физической величины является шкалой этой физической величины. Таким образом, шкала физической величины - это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в документе МИ 2365-96.

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений.

1. Шкала наименований (шкала классификации). Такие шкалы используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности. Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен. В шкалах наименований, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы - они должны надежно различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: "не приписывай одну и ту же цифру разным объектам". Числа, приписанные объектам, могут быть использованы для определения вероятности или частоты появления данного объекта, но их нельзя использовать для суммирования и других математических операций.

Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствует понятия нуля, "больше" или "меньше" и единицы измерения. Примером шкал наименований являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

2. Шкала порядка (шкала рангов). Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка существует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить во сколько раз больше или меньше конкретные проявления свойства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение шкалы удобно и достаточно для практики, используют условные (эмпирические) шкалы порядка. Условная шкала - это шкала ФВ, исходные значения которой выражены в условных единицах. Например, шкала вязкости Энглера, 12-бальная шкала Бофорта для силы морского ветра.

Широкое распространение получили шкалы порядка с нанесенными на них реперными точками. К таким шкалам, например, относится шкала Мооса для определения твердости минералов, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости: тальк - 1; гипс - 2; кальций - 3; флюорит - 4; апатит - 5; ортоклаз - 6; кварц - 7; топаз - 8; корунд - 9; алмаз - 10. Отнесение минерала к той или иной градации твердости осуществляется на основании эксперимента, который состоит в том, что испытуемый материал царапается опорным. Если после царапанья .испытуемого минерала кварцем (7) на нем остается след, а после ортоклаза (6) - не остается, то твердость испытуемого материала составляет более б, но менее 7. Более точного ответа в этом случае дать невозможно.

В условных шкалах одинаковым интервалам между размерами данной величины не соответствуют одинаковые размерности чисел, отображающих размеры. С помощью этих чисел можно найти вероятности, моды, медианы, квантили, однако их нельзя использовать для суммирования, умножения и других математических операций.

Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием. Оценивание по шкалам порядка является неоднозначным и весьма условным, о чем свидетельствует рассмотренный пример.

3. Шкала интервалов (шкала разностей). Эти шкалы являются дальнейшим развитием шкал порядка и применяются для объектов, свойства которых удовлетворяют отношениям эквивалентности, порядка и аддитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало - нулевую точку. К таким шкалам относится летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо рождество Христово и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

На шкале интервалов определены действия сложения и вычитания интервалов. Действительно, по шкале времени интервалы можно суммировать или вычитать и сравнивать, во сколько раз один интервал больше другого,  но складывать даты каких-либо событий просто бессмысленно.

4. Шкала отношений. Эти шкалы описывают свойства эмпирических объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода - аддитивные), а в ряде случаев и пропорциональности (шкалы первого рода - пропорциональные). Их примерами являются шкала массы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и единица измерений, установленная по соглашению. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерении ФВ.

Шкалы отношений - самые совершенные. Они описываются уравнением , где Q - ФВ, для которой строится шкала, [Q] - ее единица измерения, q - числовое значение ФВ. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением q2 = q1[Q1]/[Q2].

5. Абсолютные шкалы. Некоторые авторы используют понятие абсолютных шкал, под которыми понимают шкалы, обладающие всеми признаками шкал отношений,  но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящие от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам: коэффициенту усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Отметим, что шкалы наименований и порядка называют неметрическими (концептуальными), а шкалы интервалов и отношений - метрическими (материальными). Абсолютные и метрические шкалы относятся к разряду линейных. Практическая реализация шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного воспроизведения.

 

 

Физические законы и размерности физических величин

 

Всякий количественный физический закон содержит в себе некоторое утверждение относительно связей между теми или иными физическими величинами. Например, во втором законе Ньютона содержится утверждение, что ускорение тела пропорционально действующей на это тело силе; в законе Кулона содержится утверждение, что сила взаимодействия между двумя точечными зарядами обратно пропорциональна квадрату расстояния между ними, и т. д. Для того чтобы проверить на опыте эти утверждения, мы должны независимыми способами одновременно измерить все те величины, к которым относится наше утверждение. Пока мы не располагаем способами независимого измерения всех тех величин, которых касается наше утверждение, мы не можем проверить его на опыте.

Так, положение, содержащееся во втором законе Ньютона, что ускорение пропорционально действующей силе, только тогда можно рассматривать как утверждение, поддающееся проверке на опыте, если мы располагаем независимыми способами измерения ускорений и сил. Если же мы не располагаем независимым способом измерения силы, а определяем силы по тем ускорениям, которые они сообщают телу, то положение, что ускорение пропорционально силе, уже не является утверждением, поддающимся опытной проверке, а представляет собой определение силы, которое, как и всякое определение, в непосредственной опытной проверке не нуждается. Если мы определяем силу по ускорению, заранее считая ее пропорциональной ускорению, то нет смысла подвергать опытной проверке положение, что ускорения пропорциональны силам.

При формулировке всяких физических законов нужно ясно отдавать себе отчет, в какой мере те или иные положения представляют собой утверждения, нуждающиеся в проверке на опыте, и в какой мере они являются лишь определениями новых физических вели­чин. Различать утверждения и определения необходимо потому, что утверждения и определения стоят в совершенно различной связи с опытом.

Утверждения можно и нужно проверять на опыте. Именно постольку, поскольку эти утверждения поддаются опытной проверке и подтверждаются на опыте, они представляют собой физические законы. Проверка состоит в том, что результаты нескольких независимых измерений различных физических величин удовлетворяют соотношению, выражаемому законом.

Определения же не поддаются опытной проверке такого рода. Правда, поскольку в определении всякой физической величины содержится способ ее измерения, этот способ должен, как указывалось, удовлетворять определенным требованиям. С этой точки зрения определения подлежат испытанию на опыте. Однако это испытание сводится к тому, что результаты многократных измерений одной и той же физической величины должны удовлетворять определенным требованиям: однозначности, повторяемости, должны «вести» себя как числа и т. д. Таким образом, испытание на опыте, которому подлежит определение, отличается от проверки на опыте, которой должно быть подвергнуто утверждение.

Если бы в физических законах речь шла всегда только о пропорциональности между физическими величинами, утверждения о том, что между данными величинами существует пропорциональность, оставались бы правильными для любых масштабов единиц (конечно, при условии, что мы во всей серии измерений, используемых для проверки данного утверждения, применяем все время одни и те же единицы). Действительно, замена во всех измерениях одних единиц другими изменит результаты всех измерений в одинаковое число раз, и если между какими-либо величинами существует пропорциональность в одной серии измерений, то она сохранится и во всякой другой серии измерений, произведенной при помощи других единиц.

Таким образом, пока речь идет только о пропорциональности между какими-либо величинами, все ограничения при выборе единиц включаются только в том, что каждую величину мы должны изме­рять все время в одних и тех же единицах. Выбор же самих единиц, служащих для измерения той или другой величины, остается произвольным.

Иначе обстоит дело, когда в физическом законе содержится утверждение не о пропорциональности, а о равенстве между какими-либо комбинациями физических величин. Ясно, что от пропорциональности между какими-либо величинами всегда можно перейти к равенству между ними, введя соответствующий коэффициент пропорциональности. Этот коэффициент пропорциональности мы могли бы определить из опыта, измерив один раз все физические величины, входящие в данный закон. Дальше мы могли бы утверждать, что результаты измерения нескольких различных физических величин должны удовлетворять определенному равенству.

Например, второй закон Ньютона представляет собой утвержде­ние, что произведение массы на ускорение равно действующей силе. Мы утверждаем, что, измерив какими-либо независимыми способами массу тела, его ускорение и действующую силу и перемножив числа, полученные в результате первых двух измерений, мы получим число, равное результату третьего измерения. Но в таком виде это утверждение справедливо только при определенном выборе единиц измерений, например, если мы будем измерять массу в граммах, ускорение в см/сек2 и силу в динах. Если же мы будем измерять массу в килограммах, а ускорение и силу — по-прежнему в см/сек2 и динах, то равенство между произведением массы на ускорение и силой, конечно, нарушится. Следовательно, в этом случае на выбор единиц измерений накладываются какие-то более жесткие требования, чем в том случае, когда речь идет только о пропорциональности между физическими величинами.

В том случае, когда мы пользуемся какой-либо одной абсолютной системой единиц, часто бывает удобно изменять масштабы единиц, например, измерять длину в одних случаях в сантиметрах, в других — в метрах, и т. д. Поэтому, прежде всего, необходимо выяснить, как изменяются результаты измерения тех или иных физических величин при таком изменении масштаба. Пока речь идет о результатах измерения тех величин, которые лежат в основе данной системы единиц, дело обстоит просто. Если, например, мы увеличиваем масштаб длины в 100 раз — переходим от сантиметров к метрам, — то числа, получающиеся в результате измерения всех длин, уменьшаются в 100 раз. Но когда мы производим измерения каких-либо других, не основных величин, например силы, работы и т. д., то влияние изменения масштабов на числа, получающиеся в результате измерения этих величин, не столь очевидно.

Числа, получающиеся в результате этих измерений, вообще говоря, изменяются при изменении масштабов основных единиц, так как в абсолютной системе единиц при изменении основных единиц изменяются и все производные единицы. Действительно, если, например, мы увеличим в n раз единицу длины, то во столько же раз увеличится и единица силы; если мы увеличим в n раз единицу времени, то единица силы уменьшится в n2 раз. Вместе с изменением единиц, служащих для измерения, изменятся, конечно, и числа, получающиеся в результате измерения: тех или иных физических величин.

 

Определения основных единиц

Метр — длина, равная 1650763,73 длин волн (в вакууме) излучения, соответствующего переходу между уровнями 2р10 и 5d5, атома криптона-86.

Килограмм — единица массы — представлен массой международного прототипа килограмма.

Секунда—1/31556925,9747 часть тропического года для 1900 г. января 0 в 12 часов эфемеридного времени.

Ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2 10-7 единиц силы Международной системы на каждый метр длины.

Градус Кельвина — единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды установлено значение 273,16о К (точно).

Свеча — единица силы света, значение которой принимается таким, чтобы яркость полого излучателя при температуре затвердевания платины была равна 60 св на 1 см2.

 

Очевидно, что при данном изменении масштабов результаты всех измерений одних и тех же физических величин изменятся одинаково. Другими словами, для всякой физической величины существует вполне определенная связь между изменениями масштабов основных единиц и изменениями чисел, получающихся в результате измерения этой физической величины. Размерность физической величины и выражает эту связь.

Размерность физической величины указывает, как изменяется число, выражающее результат измерения данной физической величины, при изменении масштабов применяемых единиц.

Для указания размерности физических величин пользуются символическими обозначениями, например LpM- q T- r. Это означает, что в системе LМТ число, выражающее результат измерения данной физической величины, уменьшится в nр раз, если единицу длины увеличить в n раз, увеличится в nq раз, если единицу массы увеличить в n раз, и, наконец, увеличится в n r раз, если единицу времени увеличить ,в n раз.

Итак, размерность физической величины указывает, как в данной абсолютной системе единиц изменяются единицы, служащие для измерения этой физической величины, при изменении масштабов основных единиц. Например, сила в системе LМТ имеет размерность LМТ-2; это значит, что при увеличении единицы длины в n раз единица силы также увеличивается в n раз; при увеличении единицы массы в n раз единица силы также увеличивается в n раз и, наконец, при увеличении единицы времени в n раз единица силы уменьшается в n2 раз.

Размерность всякой физической величины определяется, с одной стороны, установленным способом измерения данной физической ветчины, а с другой, — выбором системы единиц. Например, если мы измеряем скорость отношением пройденного пути к тому промежутку времени, за который этот путь пройден, то в системе LМТ скорость будет иметь размерность LТ-1. Но если бы мы измеряли скорость по тому времени, в течение которого свободно падающее тело достигло бы измеряемой скорости, тогда за единицу скорости мы должны были бы принять такую скорость, которой свободно падающее тело достигло пи за единицу времени. Ясно, что в этом случае единица скорости изменилась бы так же, как единица времени, и размерность скорости в системе LМТ была бы Т.

Вместе с тем, как уже сказано, размерность физической величины зависит и от выбора системы единиц. Так, например, плотность, которую мы определяем как отношение массы тела к его объему, в системе LMТ имеет, очевидно, размерность L-3М. Если же пользоваться системой единиц, в основу которой положены единицы длины, силы и времени, т.е. системой LFT, то размерность массы, а вместе с тем и плотности, будет зависеть от выбора способа измерения масс. Измеряя массу по отношению силы к сообщаемому этой силой ускорению, мы получим для массы размерность L-1FT2, а для плотности — L-4FT2.

Таким образом, в различных системах единиц размерность одной и той же физической величины, вообще говоря, различна. В частности, например, различны размерности силы тока в системах CGSE и CGSM. В первой системе размерность силы тока есть L3/2M1/2T-2, а во второй — L1/2M1/2T-1. Поэтому отношение величины силы тока в системах CGSE и CGSM имеет размерность LТ-1, т.е. совпадает с размерностью скорости. Это отношение называется электродинамической постоянной. Специальные измерения показали, что электродинамическая  постоянная с = 2,99796·1010 см/сек, т.е. совпадает со скоростью света в пустоте.

 

Правило размерностей

Эти жесткие требования, казалось бы, заключаются в том, что, формулируя какой-либо физический закон в виде равенства, мы должны тут же фиксировать и единицы, в которых следует измерять псе входящие в этот закон величины. Однако эти требования можно значительно смягчить, если во всех равенствах, выражающих физические законы, размерности обеих частей равенства будут одинаковы. В таком случае требование сводится только к тому, чтобы для измерения всех величин, входящих в данное равенство, пользоваться одной и той же абсолютной системой единиц. Масштаб же основных единиц можно выбирать совершенно произвольно — равенство при этом не нарушается.

Так, во втором законе Ньютона можно, пользуясь системой LMT, измерять массу в граммах, ускорение в см/сек2 и силу в г·см/сек2, т. е. в динах. Но можно также пользоваться системой единиц: метр, килограмм массы, секунда; тогда ускорение следует измерять в м/сек2, а силу — в кг·м/сек2. Как в том, так и в другом случае произведение массы на ускорение будет равно действующей силе. Обусловлено это именно тем, что во втором законе Ньютона размерности обеих частей равенства одинаковы: размерность силы равна произведению размерностей массы и ускорения. Поэтому при переходе к новым масштабам результаты измерений отдельных величин будут, изменяться одинаково и равенство не нарушится.

Это справедливо, конечно, всегда. Соотношения, которые существуют между физическими величинами, не зависят от выбора масштабов единиц, если знак равенства соединяет выражения, имеющие одинаковую размерность. Нельзя сказать, что соотношения, в которых знак равенства соединяет выражения различной размерности, не имеют смысла, — они лишь не имеют общности. Например, можно утверждать, что давление Р в воде, выраженное в кГ/см2, равно одной десятой от глубины погружения h в метрах, и записать это следующим образом:

Р (кГ/см2) = 0,1 h (м).

Эта формула не только имеет вполне определенный смысл, по ею пользоваться удобнее, чем всякой другой, несмотря на то, что размерности правой и левой частей в ней различны. Но она не имеет общности — она верна лишь в тех, случаях, когда мы измеряем давление в кГ/см2, а глубину в метрах. Если мы перейдем к измерению глубины, например, в сантиметрах, то формула окажется неверной.

Каким же образом достигается в физических формулах равенство размерностей правой и левой частей, обеспечивающее этим формулам общность, т. е. независимость от масштабов?

Здесь следует различать два случая.

Первый состоит в том, что в формулу, выражающую данный физический закон, входит какая-либо физическая величина, для которой единицы измерения устанавливаются на основании этого самого закона. Примером этого может служить закон Кулона:

F = e e2/ r2.                   (1.1)

Единица количества электричества устанавливается на основании самого закона Кулона: мы принимаем за единицу такое количество электричества, которое с равным ему количеством электричества, находящимся на расстоянии, равном единице, взаимодействует с силой, равной единице. В этом случае одинаковая размерность правой и левой частей соблюдается, так сказать, «автоматически». Действительно, если закон Кулона справедлив при любых масштабах единиц значит, размерности правой и левой частей в (1.1) должны быть одинаковыми. Отсюда определяется связь между единицами количества электричества и единицами силы и длины. Размерность количества электричества в системе LМТ должна быть L3/2M1/2T-1, чтобы размерность выражения e e2/ r2 оказалась равной размерности силы.

Таким же образом в каждом из законов, которыми мы пользуемся для установления единиц измерения какой-либо из физических ве­личин, входящих в этот закон, одинаковая размерность правой и левой частей равенства всегда будет обеспечена.

Во втором случае в формулу, выражающую данный закон, входят только такие физические величины, для которых единицы измерения установлены были ранее либо непосредственно (в виде эталонов), либо при помощи каких-либо других законов. При этом, вообще говоря, может случиться, что наш закон устанавливает пропорциональность между комбинациями физических величин, размерности которых различны. Тогда после перехода от пропорциональности к равенству, чтобы это равенство не нарушалось, коэффициент пропорциональности должен изменяться при изменении масштабов.

Например, в случае закона всемирного тяготения утверждение состоит в том, что сила F взаимного притяжения двух тел прямо пропорциональна произведению масс m1 и m2 этих тел и обратно пропорциональна квадрату расстояния r между ними:

F ~ m1· m2/r2.

Но размерность правой части есть М2L-2, а размерность левой MLT-2, следовательно, величина численного коэффициента, который нужно ввести, чтобы от пропорциональности перейти к равенству, будет зависеть от выбора масштабов. Мы могли бы написать закон всемирного тяготения в общем виде следующим образом:

F = γ(m1· m2/r2).              (1.2)

где γ — некоторый численный коэффициент. При этом значение γ изменяется при изменении масштабов; следовательно, γ представляет собой величину, имеющую определенную размерность. И так как мы каждый раз при переходе к новым масштабам подбираем γ так, чтобы равенство (1.2) оставалось справедливым, то тем самым мы так определяем размерность γ, чтобы размерности правой и левой частей равенства (1.2) оказались одинаковыми. Для этого коэффициент γ должен иметь размерность L3M-1T-2. (Значение γ определяется из опыта; величина эта носит название гравитационной постоянной.) Но, вводя в закон всемирного тяготения этот коэффициент, размерность которого определяется из самого же закона всемирного тяготения, мы свели ниш второй случай к первому. А в первом случае, как мы видели, одинаковая размерность правой и левой частей обеспечивается «автоматически».

Может, конечно, случиться, что в новом физическом законе, связывающем между собой величины, единицы измерения которых, а значит, и размерности, были установлены заранее, размерности правой и левой частей «сами собой» оказываются одинаковыми. Тогда, хотя при переходе от пропорциональности к равенству может оказаться необходимым ввести некоторый численный коэффициент, величина этого численного коэффициента не будет зависеть от выбора масштабов единиц, т. е. он окажется безразмерным.

Мы видим, таким образом, что равенствам, выражающим физические законы, всегда можно придать такой вид, чтобы эти равенства не нарушались при изменении масштабов единиц (т. е. чтобы размерности правой и левой частей равенства, были одинаковы). Именно в таком общем, не зависящем от выбора масштабов, виде и принято обычно выражать все физические законы и вообще все соотношения между физическими величинами. Иногда, однако, бывает удобнее не соблюдать условия одинаковой размерности правой и левой частей (выражения получаются проще). Но тогда обязательно должно быть оговорено, в каких единицах производится измерение всех входящих в соотношение величин, и нужно иметь в виду, что применять другие единицы, отличные от указанных, уже нельзя.

 

Системы единиц

Для измерения всякой физической величины нужно выбрать эталон данной физической величины. Поэтому, в сущности, мы должны были бы иметь множество эталонов для всех разнообразнейших физических величин. Для того чтобы избавиться от необходимости вводить новый эталон для всякой новой физической величины, поступают следующим образом. Выбрав несколько эталонов для основных физических величин (например, длины, времени, массы) принимают их за основные единицы. Единицы всех остальных физических величин устанавливают при помощи этих основных единиц, пользуясь для этого физическими законами, связывающими между собой новые физические величины с теми, для которых эталоны существуют.

Так, например, в качестве эталона силы можно было бы пользоваться сжатой (или растянутой) на определенную величину пружиной. Но необходимость в этом эталоне силы отпадает, если мы воспользуемся вторым законом Ньютона, устанавливающим связь между массой, ускорением и силой. Так как согласно этому закону сила пропорциональна произведению массы на ускорение, то за единицу силы мы можем принять такую силу, которая определенной массе m сообщает определенное ускорение а. Если хранящиеся у нас эталоны позволяют измерять массы и ускорения, то мы всегда сможем воспроизвести эталон силы, подобрав силу (например, сжатие пружины) так, чтобы она массе m сообщала ускорение а.

При переходе от основных единиц (т. е. тех, для которых хранятся специальные эталоны) к производным можно было бы устанавливать эти новые единицы совершенно произвольно и за единицу силы принять такую силу, которая произвольно выбранной определенной массе сообщает некоторое произвольно же выбранное определенное ускорение. Однако вся система единиц получается гораздо более стройной и все физические соотношения принимают более простой и удобный вид, если при установлении новых единиц определять их таким образом, чтобы в выражение новой величины через основные не входили никакие числовые коэффициенты. Тогда за единицу силы мы должны принять такую силу, которая массе, равной единице, сообщает ускорение, равное единице; за единицу количества электричества мы должны принять такое количество электричества, которое с равным ему количеством электричества, на расстоянии, равном единице, взаимодействует с силой, равной единице, и т. д. Построенные по этому принципу системы единиц носят название абсолютных.

Существует несколько абсолютных систем единиц, отличающихся выбором тех величин, которые приняты за основные и для которых установлены специальные эталоны. В физике наиболее употребительна система единиц, в основу которой положены единицы длины (L), массы (М) и времени (Т). Все остальные единицы выводятся из этих трех основных). Это — так называемая система LМТ.

В качестве эталонов в этой системе служат: эталон длины — линейка, длина которой принята за 1 м, и эталон массы — гиря, масса которой принята за 1 кг); в качестве эталона промежутка времени до последнего времени служили средние солнечные сутки.

Средние солнечные сутки были введены потому, что истинные солнечные сутки, т. е. промежуток времени между двумя последовательными прохождениями центра Солнца через меридиан, не остаются неизменными в течение всего года, так как Земля не только вращается вокруг своей оси, но и движется по эклиптике вокруг Солнца. Последнее движение, происходящее в разных участках эклиптики с несколько различной угловой скоростью, и приводит к тому, что в разные времена года продолжительность истинных солнечных суток оказывается несколько различной. Эти регулярные изменения продолжительности истинных солнечных суток исключаются введением средних солнечных суток.

Однако в последнее время благодаря усовершенствованию методов астрономических наблюдений и измерения промежутков времени было обнаружено, что сама угловая скорость вращения Земли вокруг своей оси не остается абсолютно постоянной, а испытывает некоторые изменения, что сказывается на продолжительности истинных, а значит, и средних солнечных суток. В связи с этим вместо средних солнечных суток в качестве эталона времени был выбран средний тропический год (его продолжительность приблизительно 365,24 средних солнечных суток). Но так как величина среднего тропического года претерпевает медленные изменения, то за эталон была принята та продолжительность среднего тропического года, которую он имел в 1900 г.

В качестве эталона длины вместо линейки может служить также длина определенной световой волны (например, желтой линии кадмия). Постоянство этого эталона может быть обеспечено путем выбора условий, в которых возникает свечение данной длины волны, и ее сравнение с измеряемой длиной может быть выполнено (при помощи интерференционных методов) с очень высокой степенью точности.

Выбрав те физические величины, эталоны которых в данной системе приняты за основные (в системе LМТ это — эталоны длины, массы и времени), следует установить еще и самую величину этих основных эталонов. Например, за единицу длины может быть принят и метр, т. е. длина того эталона, который хранится в Париже, и сантиметр, т. е. одна сотая длины эталона. Точно так же за единицу массы можно принять и грамм, т. е. одну тысячную массы эталона.

Наконец, за единицу времени могут быть приняты либо средний тропический год, либо некоторая доля его. Для того чтобы разделить эталон времени — средний тропический год — на равные чести, применяются те или иные часы. Чаще всего часы - это устройство, в котором происходит какой-либо периодический процесс (т. е. процесс, повторяющийся через равные промежутки времени). Сосчитав число периодов процесса, происходящих в часах в течение среднего тропического года, мы можем разделить год на известное число равных частей и пользоваться продолжительностью одного периода, т. е. известной долей среднего тропического года, как единицей времени. За единицу времени в физике принята 1 секунда, составляющая определенную с высокой точностью долю среднего тропического года.

Часы представляют собой, таким, образом, физический прибор, служащий при измерении времени той же цели, какой служит линейка с нанесенными на ней делениями (расстояние между которыми составляет известную долю эталона длины) при измерении длины. Как и всякий физический измерительный прибор, часы должны удовлетворять известным требованиям, и прежде всего происходящий, в них процесс должен быть точно повторяющимся.

Для разделения эталона времени — среднего тропического года — на равные части, кроме часов с маятником, сейчас применяют., другие типы часов, например кварцевые часы, в которых периодическим процессом служат упругие колебания пластинки, вырезанной из пьезоэлектрического кристалла кварца (эти колебания поддерживаются при помощи схемы с электронными лампами). В последнее время были созданы молекулярные и атомные часы, в которых используются периодические колебания, происходящие в атомах или молекулах; чтобы число этих колебаний можно было считать (с помощью специальных электрических устройств), выбирают такие колебания которым соответствуют спектральные линии, лежащие в области радиоволн.

В зависимости от выбора единиц длины, массы и времени получаются различные системы единиц, например сантиметр, грамм, секунда (CGS) или метр, килограмм, секунда (MKS). Но поскольку основными единицами и в том, и в другом случае служат единицы длины, массы и времени, то системы CGS и MKS принадлежат: к одной и той же системе LMT и отличаются только «масштабами» - величиной основных единиц, но не их природой. В дальнейшем, когда мы будем говорить об «изменении масштабов единиц», мы будем иметь в виду именно этот случай: замену в той же системе одних основных единиц другими, меньшими или большими, но не изменение природы основных единиц.

Переход от основных единиц (например, длины, массы и времени) к электрическим единицам может быть произведен уже упоминавшимся способом выбора единицы количества электричества. Тогда все остальные электрические единицы устанавливаются при помощи трех основных единиц и единицы количества электричества; например, за единицу силы тока принимается такой ток, при котором за единицу времени через сечение проводника проходит единица количества электричества, и т. д. Такая система электрических единиц называется абсолютной электростатической системой единиц. Вместе с системой CGS она образует абсолютную систему единиц CGSE.

Но переход от основных единиц — длины, массы и времени — к электрическим единицам может быть произведен и иным путем: по силе взаимодействия токов. За единицу силы тока принимается такой ток, который, протекая по проводнику, длина которого равна единице, с таким же током, протекающим по такому же проводнику, расположенному параллельно первому на расстоянии, равном единице, взаимодействует с силой, равной единице. Все остальные электрические единицы устанавливаются при помощи трех основных единиц и единицы силы тока. Например, за единицу количества электричества принимается такое количество электричества, которое протекает через сечение проводника за единицу времени при силе тока, равной единице, и т. д. Такая система электрических единиц называется абсолютной электромагнитной системой единиц. Вместе с системой CGS она образует абсолютную систему единиц CGSM.

Существуют и другие абсолютные системы единиц, в которых в основу положены другие основные величины. В механике пользуются, например, системой единиц, в которой основными единицами служат единицы длины, силы и времени. Эталоны длины и времени в этой системе единиц выбираются так же, как в системе CGS, а эталоном силы служит та сила, с которой гиря-эталон притягивается к Земле на широте 45°. Это — так называемая система LFT.

До последнего времени в различных областях науки и техники отдавали предпочтение разным системам единиц; в физике применялись, главным образом системы LМТ, в частности система CGS с ее разветвлениями CGSE и CGSM. Однако в октябре 1960 г. на Международной XI генеральной конференции по мерам и весам принята единая международная система единиц (СI), которая должна применяться как предпочтительная во всех областях науки, техники. В этой системе принято шесть основных единиц и две дополнительные (см. таблицу).

Как ясно из определений основных единиц системы СI, эта система примыкает, к системам LМТ, причем три основные ее единицы — длины, массы и времени — совпадают с таковыми системы МКS. Однако четвертая единица — ампер — в системе СI определена не так, как она должна определяться в абсолютной системе MKSM (в абсолютной системе MKSM в определении ампера вместо 2·10-7 единиц силы должна была бы стоять 1 единица силы). Это отступление сделано для того, чтобы ампер, а вместе с тем и все электрические и магнитные единицы системы СI совпали с соответствующими единицами так называемой практической системы электрических единиц, давно принятой в электротехнике (отказаться от этой применяемой во всем мире и во всех областях теоретической и практической электротехники системы единиц было бы совершенно нецелесообразно). Однако в тех случаях, когда рассматриваются вопросы физические, а не технические, часто оказывается удобнее для электрических и магнитных величин пользоваться единицами не системы СI, а систем CGSE и CGSM.

 

 

По этим соображениям мы будем иногда применять системы CGSE и CGSM, каждый раз специально оговаривая это.

В следующих параграфах будут рассмотрены общие вопросы, связанные с переходом от одних систем единиц к другим и с изменением масштабов основных единиц. При этом мы будем для определенности иметь в виду системы LМТ, но все те общие соображения, которые будут высказаны, в одинаковой мере относятся и ко всем другим абсолютным системам единиц.

 


Дата добавления: 2020-11-15; просмотров: 301; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!